Locomotor Circuits in Drosophila

About

The Dickson laboratory investigates the neural circuits that control walking in the fruit fly, Drosophila melanogaster. The goal is to understand how local circuits in the nerve cord produce rhythmic motor patterns, how these patterns are co-ordinated across each leg joint and all six legs, and how descending signals from the brain modulate these operations to alter the fly's direction, speed and gait.

The lab started operation at QBI in August 2015. The immediate task was to set up the equipment needed to measure and manipulate neuronal activity in the live nerve cord. Genetically encoded activity reporters and modulators, together with fast volumetric imaging, make it possible to simultaneously monitor the activity of large populations of neurons while acutely manipulating the output of one specific cell type. With this approach, it should be possible to systematically explore the operating principles of the locomotor circuits in the fly's central nervous system.

This system was almost fully functional by year's end, so that the group can now focus on three complementary goals: (1) further expanding the collection of genetic tools that can be used to target activity modulators and reporters to specific cell types, (2) investigating how activity patterns in the nerve cord respond to a descending signal that triggers backward walking, and (3) searching for a complementary descending pathway that initiates forward walking.

Contact

  +61 7 334 66328

  b.dickson@uq.edu.au


Group Publications

Research Areas

  • Drosophila (fruit fly) locomotion behaviour
  • Neural circuits involving walking
  • Genetic dissection of cell types in ventral nerve cord
  • Functional connectivity mapping by multiphoton imaging


Apply for a PhD

Group Leader

 


Research Members

Sen, RajyashreeWu, MingBranson, KristinRobie, AliceRubin, Gerald M. and Dickson, Barry J. (2017)Moonwalker descending neurons mediate visually evoked retreat in DrosophilaCurrent Biology27 5: 766-771. doi:10.1016/j.cub.2017.02.008

Swoboda, N.Moosburner, J.Bruckner, S.Yu, J. Y.Dickson, B. J. and Buhler, K. (2017)Visualization and quantification for interactive analysis of neural connectivity in DrosophilaComputer Graphics Forum36 1: 160-171. doi:10.1111/cgf.12792

Dulac, Catherine and Dickson, Barry J. (2016)Editorial overview: neurobiology of sexCurrent Opinion in Neurobiology38 A1-A3. doi:10.1016/j.conb.2016.06.001

Trapp, MartinSchulze, FlorianNovikov, Alexey A.Tirian, LaszloDickson, Barry J. and Buhler, Kayja (2016)Adaptive and background-aware GAL4 expression enhancement of co-registered confocal microscopy imagesNeuroinformatics14 2: 221-233. doi:10.1007/s12021-015-9289-y

Clemens, JanGirardin, Cyrille C.Coen, PhilipGuan, Xiao-JuanDickson, Barry J. and Murthy, Mala (2015)Connecting neural codes with behavior in the auditory system of DrosophilaNeuron87 6: 1332-1343. doi:10.1016/j.neuron.2015.08.014

Ammer, GeorgLeonhardt, AljoschaBahl, ArminDickson, Barry J. and Borst, Alexander (2015)Functional specialization of neural input elements to the Drosophila ON motion detectorCurrent Biology25 17: 2247-2253. doi:10.1016/j.cub.2015.07.014

Chin, An-LunLin, Chih-YungFu, Tsai-FengDickson, Barry J. and Chiang, Ann-Shyn (2014)Diversity and wiring variability of visual local neurons in the Drosophila medulla M6 stratumJournal of Comparative Neurology522 17: 3795-3816. doi:10.1002/cne.23622

Feng, KaiPalfreyman, Mark T.Häsemeyer, MartinTalsma, Aaron and Dickson, Barry J. (2014)Ascending SAG neurons control sexual receptivity of Drosophila femalesNeuron83 1: 135-148. doi:10.1016/j.neuron.2014.05.017

Bath, Daniel E.Stowers, John R.Hoermann, DorotheaPoehlmann, AndreasDickson, Barry J. and Straw, Andrew D. (2014)FlyMAD: Rapid thermogenetic control of neuronal activity in freely walking DrosophilaNature Methods11 7: 756-762. doi:10.1038/nmeth.2973

Bussell, Jennifer J.Yapici, NilayZhang, Stephen X.Dickson, Barry J. and Vosshall, Leslie B. (2014)Abdominal-B neurons control Drosophila virgin female receptivityCurrent Biology24 14: 1584-1595. doi:10.1016/j.cub.2014.06.011

Bidaye, Salil S.Machacek, ChristianWu, Yang and Dickson, Barry J. (2014)Neuronal control of Drosophila walking directionScience344 6179: 97-101. doi:10.1126/science.1249964

Meier, MatthiasSerbe, EtienneMaisak, Matthew S.Haag, JuergenDickson, Barry J. and Borst, Alexander (2014)Neural circuit components of the drosophila off motion vision pathwayCurrent Biology24 4: 385-392. doi:10.1016/j.cub.2014.01.006

von Philipsborn, Anne C.Joerchel, SabrinaTirian, LaszloDemir, EbruMorita, TomokoStern, David L. and Dickson, Barry J. (2014)Cellular and behavioral functions of fruitless isoforms in Drosophila courtshipCurrent Biology24 3: 242-251. doi:10.1016/j.cub.2013.12.015

Kvon, Evgeny Z.Kazmar, TomasStampfel, GeraldYanez-Cuna, J. OmarPagani, MichaelaSchernhuber, KatharinaDickson, Barry J. and Stark, Alexander (2014)Genome-scale functional characterization of Drosophila developmental enhancers in vivoNature5121: 91-95. doi:10.1038/nature13395

Lin, Hui-HaoChu, Li-AnFu, Tsai-FengDickson, Barry J. and Chiang, Ann-Shyn (2013)Parallel neural pathways mediate CO2 avoidance responses in DrosophilaScience340 6138: 1338-1341. doi:10.1126/science.1236693

Lin, Chih-YungChuang, Chao-ChunHua, Tzu-EnChen, Chun-ChaoDickson, Barry J.Greenspan, Ralph J. and Chiang, Ann-Shyn (2013)A comprehensive wiring diagram of the protocerebral bridge for visual information processing in the Drosophila brainCell Reports3 5: 1739-1753. doi:10.1016/j.celrep.2013.04.022

Maisak, Matthew S.Haag, JuergenAmmer, GeorgSerbe, EtienneMeier, MatthiasLeonhardt, AljoschaSchilling, TabeaBahl, ArminRubin, Gerald M.Nern, AljoschaDickson, Barry J.Reiff, Dierk F.Hopp, Elisabeth and Borst, Alexander (2013)A directional tuning map of Drosophila elementary motion detectorsNature500 7461: 212-216. doi:10.1038/nature12320

Kruettner, SebastianStepien, BarbaraNoordermeer, Jasprina N.Mommaas, Mieke A.Mechtler, KarlDickson, Barry J. and Keleman, Krystyna (2012)Drosophila CPEB Orb2A mediates memory independent of its RNA-binding domainNeuron76 2: 383-395. doi:10.1016/j.neuron.2012.08.028

Keleman, KrystynaVrontou, EleftheriaKruettner, SebastianYu, Jai Y.Kurtovic-Kozaric, Amina and Dickson, Barry J. (2012)Dopamine neurons modulate pheromone responses in Drosophila courtship learningNature489 7414: 145-149. doi:10.1038/nature11345

Toda, HirofumiZhao, Xiaoliang and Dickson, Barry J. (2012)The Drosophila female aphrodisiac pheromone activates ppk23+ sensory neurons to elicit male courtship behaviorCell Reports1 6: 599-607. doi:10.1016/j.celrep.2012.05.007

Kvon, Evgeny Z.Stampfel, GeraldYanez-Cuna, J. OmarDickson, Barry J. and Stark, Alexander (2012)HOT regions function as patterned developmental enhancers and have a distinct cis-regulatory signatureGenes and Development26 9: 908-913. doi:10.1101/gad.188052.112

Lai, Jason Sih-YuLo, Shih-JieDickson, Barry J. and Chiang, Ann-Shyn (2012)Auditory circuit in the Drosophila brainProceedings of the National Academy of Sciences of the United States of America109 7: 2607-2612. doi:10.1073/pnas.1117307109

Pappu, Kartik S.Morey, MartaNern, AljoschaSpitzweck, BettinaDickson, Barry J. and Zipursky, S. L. (2011)Robo-3-mediated repulsive interactions guide R8 axons during Drosophila visual system developmentProceedings of the National Academy of Sciences of the United States of America108 18: 7571-7576. doi:10.1073/pnas.1103419108

Hadjieconomou, DafniRotkopf, ShayAlexandre, CyrilleBell, Donald M.Dickson, Barry J. and Salecker, Iris (2011)Flybow: Genetic multicolor cell labeling for neural circuit analysis in Drosophila melanogasterNature Methods8 3: 260-266. doi:10.1038/nmeth.1567

von Philipsborn, Anne C.Liu, TianxiaoYu, Jai Y.Masser, ChristopherBidaye, Salil S. and Dickson, Barry J. (2011)Neuronal control of Drosophila courtship songNeuron69 3: 509-522. doi:10.1016/j.neuron.2011.01.011


  • Professor Ansgar Büschges, University of Cologne, Germany
  • Professor Richard Mann, Columbia University, New York
  • Professor Silvia Daun-Gruhn, University of Cologne, Cermany
  • Dr Gwyneth Card, Janelia Research Campus, HHMI, U.S.A.
  • Dr Julie Simpson, Janelia Research Campus, HHMI, U.S.A.

 

   Prof Barry Dickson or Dr Kai Feng

Project: Neural Circuits, Genetics and Behaviour

As animals walk, run, or hop, motor circuits in the spinal cord convert descending “command” signals from the brain into the coordinated movements of many different leg muscles. How are command signals from the brain deconvolved into the appropriate patterns of motor neuron activity? We aim to answer this question for Drosophila by studying the functional organization of leg motor circuits in the ventral nerve cord, the fly’s analogue of the spinal cord. In Drosophila, individual neuronal cell types can be reproducibly identified and manipulated using genetic reagents that have been developed to target specific descending neurons, interneurons, or motor neurons. We have also established imaging pipeline to identify novel neurons that are behaviourally relevant and probe how they talk to each other. A range of projects involving optogenetics, two-photon imaging, machine learning assisted behavioural analysis and circuit modelling are currently open to honours students with a background in any area of molecular biology or experimental or theoretical neuroscience.

 

How to apply

 

   Prof Barry Dickson

Project 1: Neural Mechanisms of Drosophila locomotion

As animals walk, run, or hop, motor circuits in the spinal cord convert descending “command” signals from the brain into the coordinated movements of many different leg muscles. How are command signals from the brain deconvolved into the appropriate patterns motor neuron activity?

We aim to answer this question for Drosophila by studying the functional organization of leg motor circuits in the ventral nerve cord, the fly’s analogue of the spinal cord. In Drosophila, individual neuronal cell types can be reproducibly identified and manipulated using genetic reagents that have been developed to target specific descending neurons, interneurons, or motor neurons.

In your thesis project, you will learn a range of methods including genetics, multiphoton imaging, optogenetics and quantitative behavioural analysis, and use these methods to elucidate the structure and function of the motor circuits controlled by a specific class of descending neuron. This may be, for example, a descending neuron that, when activated, causes the fly to walk backwards (see Bidaye et al, Science 6179:97), or one that elicits turning. Understanding the circuit mechanisms behind those simple actions will shed light on general computational principles of neural networks, and may even help us to design smarter robot.

 

How to apply