QBI research publications

  • The time-course of feature-based attention effects dissociated from temporal expectation and target-related processes

    Selective attention prioritises relevant information amongst competing sensory input. Time-resolved electrophysiological studies have shown stronger representation of attended compared to unattended stimuli, which has been interpreted as an effect of attention on information coding. However, because attention is often manipulated by making only the attended stimulus a target to be remembered and/or responded to, many reported attention effects have been confounded with target-related processes such as visual short-term memory or decision-making. In addition, attention effects could be influenced by temporal expectation about when something is likely to happen. The aim of this study was to investigate the dynamic effect of attention on visual processing using multivariate pattern analysis of electroencephalography (EEG) data, while (1) controlling for target-related confounds, and (2) directly investigating the influence of temporal expectation. Participants viewed rapid sequences of overlaid oriented grating pairs while detecting a “target” grating of a particular orientation. We manipulated attention, one grating was attended and the other ignored (cued by colour), and temporal expectation, with stimulus onset timing either predictable or not. We controlled for target-related processing confounds by only analysing non-target trials. Both attended and ignored gratings were initially coded equally in the pattern of responses across EEG sensors. An effect of attention, with preferential coding of the attended stimulus, emerged approximately 230 ms after stimulus onset. This attention effect occurred even when controlling for target-related processing confounds, and regardless of stimulus onset expectation. These results provide insight into the effect of feature-based attention on the dynamic processing of competing visual information.
  • Post-stroke apathy: a case series investigation of neuropsychological and lesion characteristics

    Apathy is a multi-dimensional syndrome associated with reduced initiation, executive function and emotion toward goal-directed behaviour. Affecting ∼30% of stroke patients, apathy can negatively impact rehabilitation outcomes and increase caregiver burden. However, relatively little is known about the multi-dimensional nature of post-stroke apathy and whether these dimensions map onto neuropsychological and neuroanatomical correlates. The present study aimed to address this question in a case series of stroke patients with apathy. 65 patients with acute stroke were assessed on a comprehensive battery of neuropsychological tasks and 12 patients were identified as having clinically significant apathy on one or more domains on the Dimensional Apathy Scale. Individual scores were compared to a group of healthy controls and normative data where available. Lesion mapping was completed from clinical CT and MRI scans to characterise the extent and locations of each patient's lesion. All participants performed significantly poorer than controls on one or more tasks. Difficulties with inhibition were observed across all dimensions. Prospective memory deficits were also common, while speed and social cognition were only reduced in initiation and emotional apathy, respectively. Verbal fluency was not impaired in any of the patients, despite previously established relationships with apathy. Lesions were predominantly located in right subcortical regions, with some additional frontal, temporal and cerebellar/brainstem involvement. There was substantial overlap in lesion locations within and between dimensions, such that similar apathy symptoms occurred in patients with very different lesion sites. Overall, our results suggest that neuropsychological and lesion profiles of apathy in stroke patients may be more complex and heterogenous than in neurodegenerative disease, possibly due to functional changes occurring beyond the lesion site.
  • Genome-wide association study suggests the variant rs7551288*A within the DHCR24 gene is associated with poor overall survival in melanoma patients

    Melanoma incidence rates are high among individuals with fair skin and multiple naevi. Established prognostic factors are tumour specific, and less is known about prognostic host factors. A total of 556 stage I to stage IV melanoma patients from Germany with phenotypic and disease-specific data were analysed; 64 of these patients died of melanoma after a median follow-up time of 8 years. Germline DNA was assessed by the HumanCoreExome BeadChip and data of 356,384 common polymorphisms distributed over all 23 chromosomes were used for a genome-wide analysis. A suggestive genome-wide significant association of the intronic allele rs7551288*A with diminished melanoma-specific survival was detected (p = 2 × 10−6). The frequency of rs7551288*A was 0.43 and was not associated with melanoma risk, hair and eye colour, tanning and total naevus count. Cox regression multivariate analyses revealed a 5.31-fold increased risk of melanoma-specific death for patients with the rs7551288 A/A genotype, independent of tumour thickness, ulceration and stage of disease at diagnoses. The variant rs7551288 belongs to the DHCR24 gene, which encodes Seladin-1, an enzyme involved in the biosynthesis of cholesterol. Further investigations are needed to confirm this genetic variant as a novel prognostic biomarker and to explore whether specific treatment strategies for melanoma patients might be derived from it.
  • Unconscious Influences on “Free Will” Movement Initiation: Slow-wave Brain Stimulation and the Readiness Potential

    A central objective in the study of volition has been to identify how changes in neural activity relate to voluntary—“free will”—movement. The readiness potential (RP) is observed in the EEG as a slow-building signal that precedes action onset. Many consider the RP as a marker of an underlying preparatory process for initiating voluntary movement. However, the RP may emerge from ongoing slow-wave brain oscillations that influence the timing of movement initiation in a phase-dependent manner. Transcranial alternating current stimulation (tACS) enables brain oscillations to be entrained at the frequency of stimulation. We delivered tACS at a slow-wave frequency over frontocentral motor areas while participants (n = 30) performed a simple, self-paced button press task. During the active tACS condition, participants showed a tendency to initiate actions in the phase of the tACS cycle that corresponded to increased negative potentials across the frontocentral motor region. Comparisons of premovement EEG activity observed over frontocentral and central scalp electrodes showed earlier onset and increased amplitude of RPs from active stimulation compared with sham stimulation. This suggests that movement-related activity in the brain can be modulated by the delivery of weak, nonconsciously perceptible alternating currents over frontocentral motor regions. We present novel findings that support existing theories, which suggest the timing of voluntary movement is influenced by the phase of slow-changing oscillating brain states.
  • The m6A-epitranscriptome in brain plasticity, learning and memory

    Activity-dependent gene expression and protein translation underlie the ability of neurons to dynamically adjust their synaptic strength in response to sensory experience and during learning. The emerging field of epitranscriptomics (RNA modifications) has rapidly shifted our views on the mechanisms that regulate gene expression. Among hundreds of biochemical modifications on RNA, N-methyladenosine (mA) is the most abundant reversible mRNA modification in the brain. Its dynamic nature and ability to regulate all aspects of mRNA processing have positioned mA as an important and versatile regulator of nervous system functions, including neuronal plasticity, learning and memory. In this review, we summarise recent experimental evidence that supports the role of mA signalling in learning and memory, as well as providing an overview of the underlying molecular mechanisms in neurons. We also discuss the consequences of perturbed mA signalling and/or its regulatory networks which are increasingly being linked to various cognitive disorders in humans.
  • Fixed point attractor theory bridges structure and function in C. elegans neuronal network

    Understanding the structure–function relationship in a neuronal network is one of the major challenges in neuroscience research. Despite increasing researches at circuit connectivity and neural network structure, their structure-based biological interpretability remains unclear. Based on the attractor theory, here we develop an analytical framework that links neural circuit structures and their functions together through fixed point attractor in Caenorhabditis elegans. In this framework, we successfully established the structural condition for the emergence of multiple fixed points in C. elegans connectome. Then we construct a finite state machine to explain how functions related to bistable phenomena at the neural activity and behavioral levels are encoded. By applying the proposed framework to the command circuit in C. elegans, we provide a circuit level interpretation for the forward-reverse switching behaviors. Interestingly, network properties of the command circuit and first layer amphid interneuron circuit can also be inferred from their functions in this framework. Our research indicates the reliability of the fixed point attractor bridging circuit structure and functions, suggesting its potential applicability to more complex neuronal circuits in other species.
  • Impaired signaling for neuromuscular synaptic maintenance is a feature of Motor Neuron Disease

    A central event in the pathogenesis of motor neuron disease (MND) is the loss of neuromuscular junctions (NMJs), yet the mechanisms that lead to this event in MND remain to be fully elucidated. Maintenance of the NMJ relies upon neural agrin (n-agrin) which, when released from the nerve terminal, activates the postsynaptic Muscle Specific Kinase (MuSK) signaling complex to stabilize clusters of acetylcholine receptors. Here, we report that muscle from MND patients has an increased proportion of slow fibers and muscle fibers with smaller diameter. Muscle cells cultured from MND biopsies failed to form large clusters of acetylcholine receptors in response to either non-MND human motor axons or n-agrin. Furthermore, levels of expression of MuSK, and MuSK-complex components: LRP4, Caveolin-3, and Dok7 differed between muscle cells cultured from MND patients compared to those from non-MND controls. To our knowledge, this is the first time a fault in the n-agrin-LRP4-MuSK signaling pathway has been identified in muscle from MND patients. Our results highlight the n-agrin-LRP4-MuSK signaling pathway as a potential therapeutic target to prolong muscle function in MND.
  • A graph network model for neural connection prediction and connection strength estimation

    Reconstruction of connectomes at the cellular scale is a prerequisite for understanding the principles of neural circuits. However, due to methodological limits, scientists have reconstructed the connectomes of only a few organisms such as C. elegans, and estimated synaptic strength indirectly according to their size and number.

    Here, we propose a graph network model to predict synaptic connections and estimate synaptic strength by using the calcium activity data from C. elegans.

    The results show that this model can reliably predict synaptic connections in the neural circuits of C. elegans, and estimate their synaptic strength, which is an intricate and comprehensive reflection of multiple factors such as synaptic type and size, neurotransmitter and receptor type, and even activity dependence. In addition, the excitability or inhibition of synapses can be identified by this model. We also found that chemical synaptic strength is almost linearly positively correlated to electrical synaptic strength, and the influence of one neuron on another is non-linearly correlated with the number between them. This reflects the intrinsic interaction between electrical and chemical synapses.

    Our model is expected to provide a more accessible quantitative and data-driven approach for the reconstruction of connectomes in more complex nervous systems, as well as a promising method for accurately estimating synaptic strength.
  • Color discrimination thresholds vary throughout color space in a reef fish (Rhinecanthus aculeatus)

    Animal use color vision in a range of behaviours. Visual performance is limited by thresholds, which are set by noise in photoreceptors and subsequent neural processing. The receptor noise limited (RNL) model of color discrimination is widely used for modelling color vision and accounts well for experimental data from many species. In one of the most comprehensive tests yet of color discrimination in a non-human species, we using Ishihara-style stimulus patterns to examine thresholds for 21 directions at five locations in color space for the fish Rhineacanthus aculeatus. Thresholds matched RNL model predictions most closely for stimuli near to the the achromatic point, but exceeded predictions (indicating a decline in sensitivity) with distance from this point. Thresholds were also usually higher for saturation than for hue differences. These changes in color threshold with color space location and direction may give insight into photoreceptor non-linearities and post-receptoral mechanisms of color vision in fish. Our results highlight the need for a cautious interpretation of the RNL model - especially for modelling colours that differ from one another in saturation (rather than hue), and especially for highly saturated colours distant from the achromatic point in colour space.
  • Genetic variants associated with longitudinal changes in brain structure across the lifespan

    Human brain structure changes throughout the lifespan. Altered brain growth or rates of decline are implicated in a vast range of psychiatric, developmental and neurodegenerative diseases. In this study, we identified common genetic variants that affect rates of brain growth or atrophy in what is, to our knowledge, the first genome-wide association meta-analysis of changes in brain morphology across the lifespan. Longitudinal magnetic resonance imaging data from 15,640 individuals were used to compute rates of change for 15 brain structures. The most robustly identified genes GPR139, DACH1 and APOE are associated with metabolic processes. We demonstrate global genetic overlap with depression, schizophrenia, cognitive functioning, insomnia, height, body mass index and smoking. Gene set findings implicate both early brain development and neurodegenerative processes in the rates of brain changes. Identifying variants involved in structural brain changes may help to determine biological pathways underlying optimal and dysfunctional brain development and aging.
  • TDP-43 pathology: from noxious assembly to therapeutic removal

    Our understanding of amyotrophic lateral sclerosis and frontotemporal dementia has advanced dramatically since the discovery of cytoplasmic TAR DNA-binding protein 43 (TDP-43) inclusions as the hallmark pathology of these neurodegenerative diseases. Recent studies have provided insights into the physiological function of TDP-43 as an essential DNA-/RNA-modulating protein, and the triggers and consequences of TDP-43 dysfunction and aggregation. The formation of TDP-43 pathology is a progressive process, involving the generation of multiple distinct protein species, each with varying biophysical properties and roles in neurodegeneration. Here, we explore how the pathogenic changes to TDP-43, including mislocalisation, misfolding, aberrant liquid-liquid phase separation, stress granule assembly, oligomerisation, and post-translational modification, drive disease-association aggregation in TDP-43 proteinopathies. We highlight how pathological TDP-43 species are formed and contribute to cellular dysfunction and toxicity, via both loss-of-function and gain-of-function mechanisms. We also review the role of protein homeostasis mechanisms, namely the ubiquitin proteasome system, autophagy-lysosome pathway, heat-shock response, and chaperone-mediated autophagy, in combating TDP-43 aggregation and discuss how their dysfunction likely promotes disease pathogenesis and progression. Finally, we evaluate pre-clinical studies aimed at enhancing TDP-43 protein clearance via these mechanisms and provide insight on promising strategies for future therapeutic advances. Harnessing the mechanisms that protect against or ameliorate TDP-43 pathology presents promising opportunities for developing disease-modifying treatments for these neurodegenerative diseases.
  • Understanding nanomedicine treatment in an aggressive spontaneous brain cancer model at the stage of early blood brain barrier disruption

    Personalised nanomedicine is an advancing field which has developed significant improvements for targeting therapeutics to aggressive cancer and with fewer side effects. The treatment of gliomas such as glioblastoma (or other brain tumours), with nanomedicine is complicated by a commonly poor accumulation of drugs in tumour tissue owing to the partially intact blood-brain barrier (BBB). Nonetheless, the BBB becomes compromised following surgical intervention, and gradually with disease progression. Increased vasculature permeability generated by a tumour, combined with decreased BBB integrity, offers a mechanism to enhance therapeutic outcomes. We monitored a spontaneous glioma tumour model in immunocompetent mice with ongoing T2-weighted and contrast-enhanced T1-weighted magnetic resonance imaging gradient echo and spin echo sequences to predict an optimal “leakiness” stage for nanomedicine injections. To ascertain the effectiveness of targeted nanomedicines in treating brain tumours, subsequent systemic administration of targeted hyperbranched polymers was then utislised, to deliver the therapeutic payload when both the tumour and brain vascularity had become sufficiently susceptible to allow drug accumulation. Treatment with either doxorubicin-loaded hyperbranched polymer, or the same nanomedicine targeted to an ephrin receptor (EphA2) using a bispecific antibody, resulted in uptake of chemotherapeutic doxorubicin in the tumour and in reduced tumour growth. Compared to vehicle and doxorubicin only, nanoparticle delivered doxorubicin resulted in increased tumour apoptosis, while averting cardiotoxicity. This suggests that polyethylene based (PEGylated)-nanoparticle delivered doxorubicin could provide a more efficient treatment in tumours with a disrupted BBB, and that treatment should commence immediately following detection of gadolinium permeability, with early detection and ongoing ‘leakiness’ monitoring in susceptible patients being a key factor.
  • Delay activity during visual working memory: a meta-analysis of 30 fMRI experiments

    Visual working memory refers to the temporary maintenance and manipulation of task-related visual information. Recent debate on the underlying neural substrates of visual working memory has focused on the delay period of relevant tasks. Persistent neural activity throughout the delay period has been recognized as a correlate of working memory, yet regions demonstrating sustained hemodynamic responses show inconsistency across individual studies. To develop a more precise understanding of delay-period activations during visual working memory, we conducted a coordinate-based meta-analysis on 30 fMRI experiments involving 515 healthy adults with a mean age of 25.65 years. The main analysis revealed a widespread frontoparietal network associated with delay-period activity, as well as activation in the right inferior temporal cortex. These findings were replicated using different meta-analytical algorithms and were shown to be robust against between-study heterogeneity and publication bias. Further meta-analyses on different subgroups of experiments with specific task demands and stimulus types revealed similar delay-period networks, with activations distributed across the frontal and parietal cortices. The roles of prefrontal regions, posterior parietal regions, and inferior temporal areas are reviewed and discussed in the context of content-specific storage. We conclude that cognitive operations that occur during the unfilled delay period in visual working memory tasks can be flexibly expressed across a frontoparietal-temporal network depending on experimental parameters.
  • Monoclonal antibodies targeting surface-exposed epitopes of Candida albicans cell wall proteins confer in vivo protection in an infection model

    Monoclonal antibody (mAb)-based immunotherapies targeting systemic and deep-seated fungal infections are still in their early stages of development, with no licensed antifungal mAbs currently being available for patients at risk. The cell wall glycoproteins of Candida albicans are of particular interest as potential targets for therapeutic antibody generation due to their extracellular location and key involvement in fungal pathogenesis. Here, we describe the generation of recombinant human antibodies specifically targeting two key cell wall proteins (CWPs) in C. albicans: Utr2 and Pga31. These antibodies were isolated from a phage display antibody library using peptide antigens representing the surface-exposed regions of CWPs expressed at elevated levels during in vivo infection. Reformatted humanmouse chimeric mAbs preferentially recognized C. albicans hyphal forms compared to yeast cells, and increased binding was observed when the cells were grown in the presence of the antifungal agent caspofungin. In J774.1 macrophage interaction assays, mAb pretreatment resulted in the faster engulfment of C. albicans cells, suggesting a role of the CWP antibodies as opsonizing agents during phagocyte recruitment. Finally, in a series of clinically predictive mouse models of systemic candidiasis, our lead mAb achieved improved survival (83%) and a several-log reduction of the fungal burden in the kidneys, similar to the levels achieved for the fungicidal drug caspofungin and superior to the therapeutic efficacy of any anti-Candida mAb reported to date.
  • Neurochemical and functional interactions for improved perceptual decisions through training

    Learning and experience are known to improve our ability to make perceptual decisions. Yet, our understanding of the brain mechanisms that support improved perceptual decisions through training remains limited. Here, we test the neurochemical and functional interactions that support learning for perceptual decisions in the context of an orientation identification task. Using magnetic resonance spectroscopy (MRS), we measure neurotransmitters (i.e., glutamate, GABA) that are known to be involved in visual processing and learning in sensory [early visual cortex (EV)] and decision-related [dorsolateral prefrontal cortex (DLPFC)] brain regions. Using resting-state functional magnetic resonance imaging (rs-fMRI), we test for functional interactions between these regions that relate to decision processes. We demonstrate that training improves perceptual judgments (i.e., orientation identification), as indicated by faster rates of evidence accumulation after training. These learning-dependent changes in decision processes relate to lower EV glutamate levels and EV-DLPFC connectivity, suggesting that glutamatergic excitation and functional interactions between visual and dorsolateral prefrontal cortex facilitate perceptual decisions. Further, anodal transcranial direct current stimulation (tDCS) in EV impairs learning, suggesting a direct link between visual cortex excitation and perceptual decisions. Our findings advance our understanding of the role of learning in perceptual decision making, suggesting that glutamatergic excitation for efficient sensory processing and functional interactions between sensory and decision-related regions support improved perceptual decisions.NEW & NOTEWORTHY Combining multimodal brain imaging [magnetic resonance spectroscopy (MRS), functional connectivity] with interventions [transcranial direct current stimulation (tDCS)], we demonstrate that glutamatergic excitation and functional interactions between sensory (visual) and decision-related (dorsolateral prefrontal cortex) areas support our ability to optimize perceptual decisions through training.
  • Contributions of epigenetic inheritance to the predisposition of major psychiatric disorders: Theoretical framework, evidence, and implications

    Susceptibility to psychiatric disorders seems to be influenced by environmental disturbances throughout all stages of life. Epigenetics is described as a key “bridge” between gene and environment, shaping gene expression and phenotype in response to environmental influences. For a long time, it was believed the epigenetic information could not be transmitted from one generation to the next, however, recent evidence has demonstrated that these acquired changes can be transmitted across generations in different species, with implications also for humans. The emerging evidence of epigenetic inheritance mechanisms is changing the concept of how and what information can be transferred across generations, rising as a promising theory to explain how psychiatric-related information can be inherited. In this review, we will discuss the main theory about epigenetic inheritance, present clinical evidence of its potential role in major psychiatric disorders, and how studies with patients and animal models have helped describe the epigenetic mechanisms and possible targets underlying this process in schizophrenia, bipolar disorder, depression, post-traumatic stress disorder, anxiety, substance use disorder and autism.
  • Deep neural networks predict the need for CT in pediatric mild traumatic brain injury: A corroboration of the PECARN rule

    PurposeOnly 10% of CT scans unveil positive findings in mild traumatic brain injury, raising concerns of its overuse in this population. A number of clinical rules have been developed to address this issue, but they still suffer limitations in their specificity. Machine learning models have been applied in limited studies to mimic clinical rules; however, further improvement in terms of balanced sensitivity and specificity is still needed. In this work, the authors applied a deep artificial neural networks (DANN) model and an instance hardness threshold algorithm to reproduce the Pediatric emergency Care Applied Research Network (PECARN) clinical rule in a pediatric population collected as a part of the PECARN study between 2004 and 2006.MethodsThe DANN model was applied using 14,983 patients younger than 18 years with Glasgow Coma Scale scores ≥ 14 who had head CT reports. The clinical features of the PECARN rules, PECARN-A (group A, age < 2 years) and PECARN-B (group B, age ≤ 2 years), were used to directly evaluate the model. The average accuracy, sensitivity, precision, and specificity were calculated by comparing the model’s prediction outcome to that reported by the PECARN investigators. The instance hardness threshold and DANN model were applied to predict the need for CT in pediatric patients using fivefold cross-validation.ResultsIn the first phase, the DANN model resulted in 98.6% sensitivity and 99.7% specificity for predicting the need for CT using the predictors of the two PECARN clinical rules combined to train the model. In the second phase, the DANN model was superior to both the PECARN-A and PECARN-B rules using the predictors for each age group separately to train the model. Compared with the clinical rule, for group A, the model achieved average sensitivity (93.7% vs 100%) and specificity (97.5% vs 53.6%); for group B, the average sensitivity of the model was 99.2% versus 98.6%, and specificity was 98.8% versus 58.2%.ConclusionsIn this study, a DANN model achieved comparable sensitivity and outstanding specificity for replicating the PECARN clinical rule and predicting the need for CT in pediatric patients after mild traumatic brain injury compared with the original statistically derived clinical rule.
  • The multifaceted effects of YTHDC1-mediated nuclear m6A recognition

    N6-methyladenosine or mA modification to mRNAs is now recognised as a key regulator of gene expression and protein translation. The fate of mA-modified mRNAs is decoded by mA readers, mostly found in the cytoplasm, except for the nuclear-localised YTHDC1. While earlier studies have implicated YTHDC1-mA functions in alternative splicing and mRNA export, recent literature has expanded its close association to the chromatin-associated, noncoding and regulatory RNAs to fine-tune transcription and gene expression in cells. Here, we summarise current progress in the study of YTHDC1 function in cells, highlighting its multiple modes of action in regulating gene expression, and propose the formation of YTHDC1 nuclear condensates as a general mechanism that underlies its diverse functions in the nucleus.
  • Mapping genomic loci implicates genes and synaptic biology in schizophrenia

    Schizophrenia has a heritability of 60-80%, much of which is attributable to common risk alleles. Here, in a two-stage genome-wide association study of up to 76,755 individuals with schizophrenia and 243,649 control individuals, we report common variant associations at 287 distinct genomic loci. Associations were concentrated in genes that are expressed in excitatory and inhibitory neurons of the central nervous system, but not in other tissues or cell types. Using fine-mapping and functional genomic data, we identify 120 genes (106 protein-coding) that are likely to underpin associations at some of these loci, including 16 genes with credible causal non-synonymous or untranslated region variation. We also implicate fundamental processes related to neuronal function, including synaptic organization, differentiation and transmission. Fine-mapped candidates were enriched for genes associated with rare disruptive coding variants in people with schizophrenia, including the glutamate receptor subunit GRIN2A and transcription factor SP4, and were also enriched for genes implicated by such variants in neurodevelopmental disorders. We identify biological processes relevant to schizophrenia pathophysiology; show convergence of common and rare variant associations in schizophrenia and neurodevelopmental disorders; and provide a resource of prioritized genes and variants to advance mechanistic studies.
  • Retrotransposons: still mobile in humans

    In this Journal Club article, Geoff Faulkner discusses how a ground-breaking study of LINE-1 mobility in human genomes demonstrated not just a role in disease but also molecular details of the mechanisms of retrotransposition.
  • The role of critical immune genes in brain disorders: insights from neuroimaging immunogenetics

    Genetic variants in the human leukocyte antigen and killer cell immunoglobulin-like receptor regions have been associated with many brain-related diseases, but how they shape brain structure and function remains unclear. To identify the genetic variants in HLA and KIR genes associated with human brain phenotypes, we performed a genetic association study of ∼30 000 European unrelated individuals using brain MRI phenotypes generated by the UK Biobank (UKB). We identified 15 HLA alleles in HLA class I and class II genes significantly associated with at least one brain MRI-based phenotypes (P < 5 × 10−8). These associations converged on several main haplotypes within the HLA. In particular, the human leukocyte antigen alleles within an ancestral haplotype 8.1 were associated with multiple MRI measures, including grey matter volume, cortical thickness (TH) and diffusion MRI (dMRI) metrics. These alleles have been strongly associated with schizophrenia. Additionally, associations were identified between HLA-DRB1*04∼DQA1*03:01∼DQB1*03:02 and isotropic volume fraction of diffusion MRI in multiple white matter tracts. This haplotype has been reported to be associated with Parkinson’s disease. These findings suggest shared genetic associations between brain MRI biomarkers and brain-related diseases. Additionally, we identified 169 associations between the complement component 4 (C4) gene and imaging phenotypes. We found that C4 gene copy number was associated with cortical TH and dMRI metrics. No KIR gene copy numbers were associated with image-derived phenotypes at genome-wide threshold. To address the multiple testing burden in the phenome-wide association study, we performed a multi-trait association analysis using trait-based association test that uses extended Simes procedure and identified MRI image-specific associations. This study contributes to insight into how critical immune genes affect brain-related traits as well as the development of neurological and neuropsychiatric disorders.
  • Mortality associated with mental disorders and comorbid general medical conditions

    Premature mortality has been observed among people with mental disorders. Comorbid general medical conditions contribute substantially to this reduction in life expectancy.

    To provide an analysis of mortality associated with comorbidity between a broad range of mental disorders and general medical conditions.

    Population-based cohort study of 5 946 800 individuals born in Denmark from 1900 to 2015 and residing in the country at the start of follow-up (January 1, 2000, or their date of birth, whichever occurred later).

    Danish health registers were used to identify people with mental disorders and general medical conditions.

    Considering pairs of mental disorders and general medical conditions, we calculated mortality rate ratios (MRRs) and differences in life expectancy (ie, life-years lost) to assess the association of mortality with both disorders of interest compared with the mental disorder of interest, the general medical condition of interest, and neither disorder of interest.

    The study population comprised 2 961 397 males and 2 985 403 females, with a median (IQR) age of 32.0 years (7.3-52.9) at start of follow-up and 48.9 years (42.5-68.8) at the end. Based on all pairs of comorbid mental disorders and general medical conditions, the mean MRR compared with people without these conditions was 5.90 (median, 4.94; IQR, 3.80-7.30), and the mean reduction of life expectancy compared with the general population was 11.35 years (median, 11.08; range, 5.27-23.53; IQR, 8.22-13.72). The association with general medical condition comorbidity in those with mental disorders varied by general medical condition; for example, the addition of a neurological condition for each of the mental disorders was associated with a mean MRR of 1.22, whereas for cancer, the mean MRR for all mental disorders was 4.07.

    In this study, shorter life expectancy was associated with comorbid mental disorders and general medical conditions compared with the entire population and also when compared with patients who had either mental disorders only or general medical conditions only. Prevention and early detection of comorbidities could reduce premature mortality in patients with mental disorders.
  • Evolution of developmental timing as a driving force of brain diversity

  • Reduced cortical cholinergic innervation measured using [18F]-FEOBV PET imaging correlates with cognitive decline in mild cognitive impairment

    Dysfunction of the cholinergic basal forebrain (BF) neurotransmitter system, including cholinergic axon denervation of the cortex, plays an important role in cognitive decline and dementia. A validated method to directly quantify cortical cholinergic terminal integrity enables exploration of the involvement of this system in diverse cognitive profiles associated with dementia, particularly at a prodromal stage. In this study, we used the radiotracer [18F]-fluoroethoxybenzovesamicol (FEOBV) as a direct measure of cholinergic terminal integrity and investigated its value for the assessment of cholinergic denervation in the cortex and associated cognitive deficits. Eighteen participants (8 with mild cognitive impairment (MCI) and 10 cognitively unimpaired controls) underwent neuropsychological assessment and brain imaging using FEOBV and [18F]-florbetaben for amyloid-β imaging. The MCI group showed a significant global reduction of FEOBV retention in the cortex and in the parietal and occipital cortices specifically compared to the control group. The global cortical FEOBV retention of all participants positively correlated with the BF, hippocampus and grey matter volumes, but no association was found between the global FEOBV retention and amyloid-β status. Topographic profiles from voxel-wise analysis of FEOBV images revealed significant positive correlations with the cognitive domains associated with the underlying cortical areas. Overlapping profiles of decreased FEOBV were identified in correlation with impairment in executive function, attention and language, which covered the anterior cingulate gyrus, olfactory cortex, calcarine cortex, middle temporal gyrus and caudate nucleus. However, the absence of cortical atrophy in these areas suggested that reduced cholinergic terminal integrity in the cortex is an important factor underlying the observed cognitive decline in early dementia. Our results provide support for the utility and validity of FEOBV PET for quantitative assessment of region-specific cholinergic terminal integrity that could potentially be used for early detection of cholinergic dysfunction in dementia following further validation in larger cohorts.
  • ADRAM is an experience-dependent long noncoding RNA that drives fear extinction through a direct interaction with the chaperone protein 14-3-3

    Here, we used RNA capture-seq to identify a large population of lncRNAs that are expressed in the infralimbic prefrontal cortex of adult male mice in response to fear-related learning. Combining these data with cell-type-specific ATAC-seq on neurons that had been selectively activated by fear extinction learning, we find inducible 434 lncRNAs that are derived from enhancer regions in the vicinity of protein-coding genes. In particular, we discover an experience-induced lncRNA we call ADRAM (activity-dependent lncRNA associated with memory) that acts as both a scaffold and a combinatorial guide to recruit the brain-enriched chaperone protein 14-3-3 to the promoter of the memory-associated immediate-early gene Nr4a2 and is required fear extinction memory. This study expands the lexicon of experience-dependent lncRNA activity in the brain and highlights enhancer-derived RNAs (eRNAs) as key players in the epigenomic regulation of gene expression associated with the formation of fear extinction memory.
  • The metalloprotease ADM-4/ADAM17 promotes axonal repair

    Axonal fusion is an efficient means of repair following axonal transection, whereby the regenerating axon fuses with its own separated axonal fragment to restore neuronal function. Despite being described over 50 years ago, its molecular mechanisms remain poorly understood. Here, we demonstrate that the metalloprotease ADM-4, an ortholog of human ADAM17, is essential for axonal fusion. We reveal that animals lacking ADM-4 cannot repair their axons by fusion, and that ADM-4 has a cell-autonomous function within injured neurons, localizing at the tip of regrowing axon and fusion sites. We demonstrate that ADM-4 overexpression enhances fusion to levels higher than wild type, and that the metalloprotease and phosphatidylserine-binding domains are essential for its function. Last, we show that ADM-4 interacts with and stabilizes the fusogen EFF-1 to allow membranes to merge. Our results uncover a key role for ADM-4 in axonal fusion, exposing a molecular target for axonal repair.
  • Luminance and contrast of images in the THINGS database

    The THINGS database is a freely available stimulus set that has the potential to facilitate the generation of theory that bridges multiple areas within cognitive neuroscience. The database consists of 26,107 high quality digital photos that are sorted into 1,854 concepts. While a valuable resource, relatively few technical details relevant to the design of studies in cognitive neuroscience have been described. We present an analysis of two key low-level properties of THINGS images, luminance and luminance contrast. These image statistics are known to influence common physiological and neural correlates of perceptual and cognitive processes. In general, we found that the distributions of luminance and contrast are in close agreement with the statistics of natural images reported previously. However, we found that image concepts are separable in their luminance and contrast: we show that luminance and contrast alone are sufficient to classify images into their concepts with above chance accuracy. We describe how these factors may confound studies using the THINGS images, and suggest simple controls that can be implemented a priori or post-hoc. We discuss the importance of using such natural images as stimuli in psychological research.
  • Spatial redistribution of neurosecretory vesicles upon stimulation accelerates their directed transport to the plasma membrane

    Through the integration of results from an imaging analysis of intracellular trafficking of labelled neurosecretory vesicles in chromaffin cells, we develop a Markov state model to describe their transport and binding kinetics. Our simulation results indicate that a spatial redistribution of neurosecretory vesicles occurs upon secretagogue stimulation leading vesicles to the plasma membrane where they undergo fusion thereby releasing adrenaline and noradrenaline. Furthermore, we find that this redistribution alone can explain the observed up-regulation of vesicle transport upon stimulation and its directional bias towards the plasma membrane. Parameter fitting indicates that in the deeper compartment within the cell, vesicle transport is asymmetric and characterised by a bias towards the plasma membrane.
  • Impaired glymphatic function in the early stages of disease in a TDP-43 mouse model of amyotrophic lateral sclerosis

    Background: Multiple lines of evidence suggest possible impairment of the glymphatic system in amyotrophic lateral sclerosis (ALS). To investigate this, we used in vivo magnetic resonance imaging (MRI) to assess glymphatic function early in the course of disease in a transgenic mouse with doxycycline (Dox)-controlled expression of cytoplasmic human TDP-43 (hTDP-43ΔNLS), mimicking the key pathology implicated in ALS. Methods: Adult TDP-43 transgenic and littermate monogenic control mice underwent longitudinal multimodal MRI one and three weeks after the cessation of Dox feed, together with weekly rotarod assessments of motor performance. Glymphatic function was assessed using dynamic contrast-enhanced MRI to track the clearance of an MR contrast agent injected into the cisterna magna. Results: Compared to their littermate controls, TDP-43 mice exhibited progressive neurodegeneration including that within the primary motor cortex, primary somatosensory cortex and corticospinal tract, significant weight loss including gastrocnemius atrophy, and shortened telomere length. Furthermore, in the presence of this ALS-like phenotype, these mice have significantly disrupted glymphatic function. Conclusions: Although the relationship between glymphatic clearance and ALS disease progression remains to be elucidated, these changes occurred very early in the disease course. This provides initial evidence to suggest that the glymphatic system might be a potential therapeutic target in the treatment of ALS.
  • Structural and functional biomarkers of the insula subregions predict sex differences in aggression subscales

    Aggression is a common and complex social behavior that is associated with violence and mental diseases. Although sex differences were observed in aggression, the neural mechanism for the effect of sex on aggression behaviors remains unclear, especially in specific subscales of aggression. In this study, we investigated the effects of sex on aggression subscales, gray matter volume (GMV), and functional connectivity (FC) of each insula subregion as well as the correlation of aggression subscales with GMV and FC. This study found that sex significantly influenced (a) physical aggression, anger, and hostility; (b) the GMV of all insula subregions; and (c) the FC of the dorsal agranular insula (dIa), dorsal dysgranular insula (dId), and ventral dysgranular and granular insula (vId_vIg). Additionally, mediation analysis revealed that the GMV of bilateral dIa mediates the association between sex and physical aggression, and left dId–left medial orbital superior frontal gyrus FC mediates the relationship between sex and anger. These findings revealed the neural mechanism underlying the sex differences in aggression subscales and the important role of the insula in aggression differences between males and females. This finding could potentially explain sexual dimorphism in neuropsychiatric disorders and improve dysregulated aggressive behavior.
  • Media-multitasking and cognitive control across the lifespan

    The exponential rise in technology use over the past decade, and particularly during the COIVD-19 pandemic, has been accompanied by growing concern regarding the consequences of this technology use for our cognition. Previous studies on the influence of technology-multitasking (the use of two or more technologies simultaneously) on cognitive performance have provided mixed results. However, these past studies have generally ignored the considerable developmental trajectories that cognitive abilities undergo across the lifespan. In a large community-based science project we investigated the relationship between media-multitasking and cognitive flexibility (multitasking ability) in participants aged 7–70 years. Higher levels of every-day technology multitasking were associated with higher levels of multitasking performance across an age range in which multitasking ability undergoes developmental change. These findings suggest that age is an important moderator of the relationship between technology use and cognition.
  • Perceived helpfulness of treatment for social anxiety disorder: findings from the WHO World Mental Health Surveys

    To investigate the prevalence and predictors of perceived helpfulness of treatment in persons with a history of DSM-IV social anxiety disorder (SAD), using a worldwide population-based sample.

    The World Health Organization World Mental Health Surveys is a coordinated series of community epidemiological surveys of non-institutionalized adults; 27 surveys in 24 countries (16 in high-income; 11 in low/middle-income countries; N = 117,856) included people with a lifetime history of treated SAD.

    In respondents with lifetime SAD, approximately one in five ever obtained treatment. Among these (n = 1322), cumulative probability of receiving treatment they regarded as helpful after seeing up to seven professionals was 92.2%. However, only 30.2% persisted this long, resulting in 65.1% ever receiving treatment perceived as helpful. Perceiving treatment as helpful was more common in female respondents, those currently married, more highly educated, and treated in non-formal health-care settings. Persistence in seeking treatment for SAD was higher among those with shorter delays in seeking treatment, in those receiving medication from a mental health specialist, and those with more than two lifetime anxiety disorders.

    The vast majority of individuals with SAD do not receive any treatment. Among those who do, the probability that people treated for SAD obtain treatment they consider helpful increases considerably if they persisted in help-seeking after earlier unhelpful treatments.
  • Neuron-epidermal attachment protects hyper-fragile axons from mechanical strain

    Axons experience significant strain caused by organismal development and movement. A combination of intrinsic mechanical resistance and external shielding by surrounding tissues prevents axonal damage, although the precise mechanisms are unknown. Here, we reveal a neuroprotective function of neuron-epidermal attachment in Caenorhabditis elegans. We show that a gain-of-function mutation in the epidermal hemidesmosome component LET-805/myotactin, in combination with a loss-of-function mutation in UNC-70/β-spectrin, disrupts the uniform attachment and subsequent embedment of sensory axons within the epidermis during development. This generates regions of high tension within axons, leading to spontaneous axonal breaks and degeneration. Completely preventing attachment, by disrupting HIM-4/hemicentin or MEC-5/collagen, eliminates tension and alleviates damage. Finally, we demonstrate that progressive neuron-epidermal attachment via LET-805/myotactin is induced by the axon during development, as well as during regeneration after injury. Together, these results reveal that establishment of uniform neuron-epidermal attachment is critical to protect axons from mechanical strain during development.
  • Social cognition in temporal and frontal lobe epilepsy: systematic review, meta-analysis, and clinical recommendations

    Despite the importance of social cognitive functions to mental health and social adjustment, examination of these functions is absent in routine assessment of epilepsy patients. Thus, this review aims to provide a comprehensive overview of the literature on four major aspects of social cognition among temporal and frontal lobe epilepsy, which is a critical step toward designing new interventions.

    Papers from 1990 to 2021 were reviewed and examined for inclusion in this study. After the deduplication process, a systematic review and meta-analysis of 44 and 40 articles, respectively, involving 113 people with frontal lobe epilepsy and 1482 people with temporal lobe epilepsy were conducted.

    Our results indicated that while patients with frontal or temporal lobe epilepsy have difficulties in all aspects of social cognition relative to nonclinical controls, the effect sizes were larger for theory of mind (g = .95), than for emotion recognition (g = .69) among temporal lobe epilepsy group. The frontal lobe epilepsy group exhibited significantly greater impairment in emotion recognition compared to temporal lobe. Additionally, people with right temporal lobe epilepsy (g =  1.10) performed more poorly than those with a left-sided (g = .90) seizure focus, specifically in the theory of mind domain.

    These data point to a potentially important difference in the severity of deficits within the emotion recognition and theory of mind abilities depending on the laterlization of seizure side. We also suggest a guide for the assessment of impairments in social cognition that can be integrated into multidisciplinary clinical evaluation for people with epilepsy.
  • Assessing the contribution of rare variants to complex trait heritability from whole-genome sequence data

    Analyses of data from genome-wide association studies on unrelated individuals have shown that, for human traits and diseases, approximately one-third to two-thirds of heritability is captured by common SNPs. However, it is not known whether the remaining heritability is due to the imperfect tagging of causal variants by common SNPs, in particular whether the causal variants are rare, or whether it is overestimated due to bias in inference from pedigree data. Here we estimated heritability for height and body mass index (BMI) from whole-genome sequence data on 25,465 unrelated individuals of European ancestry. The estimated heritability was 0.68 (standard error 0.10) for height and 0.30 (standard error 0.10) for body mass index. Low minor allele frequency variants in low linkage disequilibrium (LD) with neighboring variants were enriched for heritability, to a greater extent for protein-altering variants, consistent with negative selection. Our results imply that rare variants, in particular those in regions of low linkage disequilibrium, are a major source of the still missing heritability of complex traits and disease.
  • Seeing Picasso: an investigation into the visual system of the triggerfish, Rhinecanthus aculeatus

    Vision is used by animals to find food and mates, avoid predators, defend resources, and navigate through complex habitats. Behavioural experiments are essential for understanding animals' perception but are often challenging and time-consuming; therefore, using species that can be trained easily for complex tasks is advantageous. Picasso triggerfish, Rhinecanthus aculeatus, have been used in many behavioural studies investigating vision and navigation. However, little is known about the molecular and anatomical basis of their visual system. We addressed this knowledge gap here and behaviourally tested achromatic and chromatic acuity. In terms of visual opsins, R. aculeatus possessed one rod opsin gene (RH1) and at least nine cone opsins: one violet-sensitive SWS2B gene, seven duplicates of the blue-green-sensitive RH2 gene (RH2A, RH2B, RH2C1-5), and one red-sensitive LWS gene. However, only five cone opsins were expressed: SWS2B expression was consistent, while RH2A, RH2C-1 and RH2C-2 expression varied depending on whether fish were sampled from the field or aquaria. Levels of LWS expression were very low. Using fluorescent in situ hybridisation, we found SWS2B was expressed exclusively in single cones, whereas RH2A and RH2Cs were expressed in opposite double cone members. Anatomical resolution estimated from ganglion cell densities was 6.8 cycles per degree (cpd), which was significantly higher than values obtained from behavioural testing for black and white achromatic stimuli (3.9 cpd) and chromatic stimuli (1.7-1.8 cpd). These measures were twice as high as previously reported. This detailed information on their visual system will help inform future studies with this emerging focal species.
  • Accounting for age of onset and family history improves power in genome-wide association studies

    Genome-wide association studies (GWASs) have revolutionized human genetics, allowing researchers to identify thousands of disease-related genes and possible drug targets. However, case-control status does not account for the fact that not all controls may have lived through their period of risk for the disorder of interest. This can be quantified by examining the age-of-onset distribution and the age of the controls or the age of onset for cases. The age-of-onset distribution may also depend on information such as sex and birth year. In addition, family history is not routinely included in the assessment of control status. Here, we present LT-FH++, an extension of the liability threshold model conditioned on family history (LT-FH), which jointly accounts for age of onset and sex as well as family history. Using simulations, we show that, when family history and the age-of-onset distribution are available, the proposed approach yields statistically significant power gains over LT-FH and large power gains over genome-wide association study by proxy (GWAX). We applied our method to four psychiatric disorders available in the iPSYCH data and to mortality in the UK Biobank and found 20 genome-wide significant associations with LT-FH++, compared to ten for LT-FH and eight for a standard case-control GWAS. As more genetic data with linked electronic health records become available to researchers, we expect methods that account for additional health information, such as LT-FH++, to become even more beneficial.
  • Donor bone marrow-derived macrophage MHC II drives neuroinflammation and altered behaviour during chronic GVHD in mice

    Graft-versus-host disease (GVHD) remains the leading cause of non-relapse mortality after allogeneic stem cell transplantation for haematological malignancies. Manifestations of GVHD in the central nervous system (CNS) present as neurocognitive dysfunction in up to 60% of patients, however, the mechanisms driving chronic GVHD in the CNS are yet to be elucidated. Our studies of murine chronic GVHD revealed behavioural deficits associated with broad neuroinflammation and persistent Ifng upregulation. By flow cytometry, we observed a proportional shift in the donor-derived T-cell population in the chronic GVHD brain from early CD8 dominance to later CD4 sequestration. RNA sequencing of the hippocampus identified perturbations to structural and functional synapse-related gene expression, together with the upregulation of genes associated with IFN-γ responses and antigen presentation. Neuroinflammation in the cortex of mice and humans during acute GVHD was recently shown to be mediated by resident microglia-derived TNF. In contrast, infiltration of pro-inflammatory MHC class II+ donor bone marrow-derived macrophages (BMDM) was identified as a distinguishing feature of chronic CNS GVHD. Donor BMDM, which comprised up to 50% of the CNS myeloid population, exhibited a transcriptional signature distinct from resident microglia. Recipients of MHC class II knockout bone marrow grafts exhibited attenuated neuroinflammation and behaviour comparable to controls, suggestive of a critical role of donor BMDM MHC class II expression in CNS chronic GVHD. Our identification of disease mediators distinct from those in the acute phase indicates the necessity to pursue alternative therapeutic targets for late-stage neurological manifestations.
  • Deletion of NFIX results in defective progression through meiosis within the mouse testis

    Members of the Nuclear Factor I family (NFI) are key regulators of stem cell biology during development, with well documented roles for NFIA, NFIB and NFIX in a variety of developing tissues, including brain, muscle and lung. Given the central role these factors play in stem cell biology, we posited that they may be pivotal for spermatogonial stem cells or further developing spermatogonia during testicular development. Surprisingly, in stark contrast to other developing organ systems where NFI members are co-expressed, these NFI family members show discrete patterns of expression within the seminiferous tubules. Sertoli cells (spermatogenic supporting cells) express NFIA, spermatocytes express NFIX, round spermatids express NFIB, and peritubular myoid cells express each of these three family members. Further analysis of NFIX expression during the cycle of the seminiferous epithelium revealed expression not in spermatogonia, as we anticipated, but in spermatocytes. These data suggested a potential role for NFIX in spermatogenesis. To investigate, we analysed mice with constitutive deletion of Nfix (Nfix-null). Assessment of germ cells in the postnatal day 20 (P20) testes of Nfix-null mice revealed that spermatocytes initiate meiosis, but zygotene stage spermatocytes display structural defects in the synaptonemal complex, and increased instances of unrepaired DNA double-strand breaks. Many developing spermatocytes in the Nfix-null testis exhibited multinucleation. As a result of these defects, spermatogenesis is blocked at early diplotene and very few round spermatids are produced. Collectively, these novel data establish the global requirement for NFIX in correct meiotic progression during the first wave of spermatogenesis.
  • A protocol to investigate cellular and circuit mechanisms generating sharp wave ripple oscillations in rodent basolateral amygdala using ex vivo slices

    Basolateral amygdala circuits generate oscillatory network activity to process and remember emotion-tagged events. Ex vivo preparations that recapitulate network activities seen in vivo provide an ideal system to investigate the mechanisms driving these network oscillations. Here we describe an ex vivo preparation of basolateral amygdala slices from rodents for measuring the generated sharp wave ripple oscillations (SWs) using local field potential recording and targeted recording from chandelier neurons that initiate SWs. For complete details on the use and execution of this protocol, please refer to Perumal et al. (2021).
  • People with tobacco use disorder exhibit more prefrontal activity during preparatory control but reduced anterior cingulate activity during reactive control

    Reduced inhibitory control and a hypersensitivity to reward are key deficits in drug dependents; however, they tend to be studied in isolation. Here, we seek to understand the neural processes underlying control over reward and how this is different in people with a tobacco use disorder (pTUD). A novel variant of the monetary incentive delay task was performed by pTUD (n = 20) and non-smokers (n = 20), where we added a stop-signal component such that participants had to inhibit prepotent responses to earn a larger monetary reward. Brain activity was recorded using functional magnetic resonance imaging (fMRI). We estimated stop signal reaction times (SSRTs), an indicator of impulsivity, and correlated these with brain activity. Inhibitory accuracy scores did not differ between the control group and pTUD. However, pTUD had slower SSRTs, suggesting that they may find it harder to inhibit responses. Brain data revealed that pTUD had greater preparatory control activity in the middle frontal gyrus and inferior frontal gyrus prior to successful inhibitions over reward. In contrast, non-smokers had greater reactive control associated with more activity in the anterior cingulate cortex during these successful inhibitions. SSRT–brain activity correlations revealed that pTUD engaged more control-related prefrontal brain regions when SSRTs are slower. Overall, while the inhibition accuracy scores were similar between groups, differential neural processes and strategies were used to successfully inhibit a prepotent response. The findings suggest that increasing preparatory control in pTUD may be one possible treatment target in order to increase inhibitory control over reward.
  • A midbrain-thalamus-cortex circuit reorganizes cortical dynamics to initiate movement

    Motor behaviors are often planned long before execution but only released after specific sensory events. Planning and execution are each associated with distinct patterns of motor cortex activity. Key questions are how these dynamic activity patterns are generated and how they relate to behavior. Here, we investigate the multi-regional neural circuits that link an auditory "Go cue" and the transition from planning to execution of directional licking. Ascending glutamatergic neurons in the midbrain reticular and pedunculopontine nuclei show short latency and phasic changes in spike rate that are selective for the Go cue. This signal is transmitted via the thalamus to the motor cortex, where it triggers a rapid reorganization of motor cortex state from planning-related activity to a motor command, which in turn drives appropriate movement. Our studies show how midbrain can control cortical dynamics via the thalamus for rapid and precise motor behavior.
  • Prevalence of diabetes in people with intellectual disabilities and age- and gender-matched controls: A meta-analysis

    Background: This meta-analysis aims to: (i) describe the pooled prevalence of diabetes in people with intellectual disabilities, (ii) investigate the association with demographic, clinical and treatment-related factors and (iii) compare the prevalence versus age- and gender-matched general population controls. Methods: Pubmed, Embase and CINAHL were searched until 01 May 2021. Random effects meta-analysis and an odds ratio analysis were conducted to compare rates with controls. Results: The trim- and fill-adjusted pooled diabetes prevalence amongst 55,548 individuals with intellectual disabilities (N studies = 33) was 8.5% (95% CI = 7.2%–10.0%). The trim- and fill-adjusted odds for diabetes was 2.46 times higher (95% CI = 1.89–3.21) (n = 42,684) versus controls (n = 4,177,550). Older age (R =.83, p <.001), smoking (R =.30, p =.009) and co-morbid depression (R =.18, p =.04), anxiety (R =.97, p <.001), and hypertension (R = 0.29, p <.001) were associated with higher diabetes prevalence rates. Conclusions: Our findings demonstrate that people with intellectual disabilities are at an increased risk of diabetes, and therefore routine screening and multidisciplinary management of diabetes is needed.
  • Colour vision in stomatopod crustaceans: more questions than answers

    Stomatopod crustaceans, or mantis shrimps, are known for their extensive range of spectral sensitivities but relatively poor spectral discrimination. Instead of the colour-opponent mechanism of other colour vision systems, the 12 narrow-band colour channels they possess may underlie a different method of colour processing. We investigated one hypothesis, in which the photoreceptors are proposed to act as individual wave-band detectors, interpreting colour as a parallel pattern of photoreceptor activation, rather than a ratiometric comparison of individual signals. This different form of colour detection has been used to explain previous behavioural tests in which low saturation blue was not discriminated from grey, potentially because of similar activation patterns. Results here, however, indicate that the stomatopod, Haptosquilla trispinosa was able to easily distinguish several colours, including blue of both high and low saturation, from greys. The animals did show a decrease in performance over time in an artificially lit environment, indicating plasticity in colour discrimination ability. This rapid plasticity, most likely the result of a change in opsin (visual pigment) expression, has now been noted in several animal lineages (both invertebrate and vertebrate) and is a factor we suggest needing care and potential re-examination in any colour-based behavioural tests. As for stomatopods, it remains unclear why they achieve poor colour discrimination using the most comprehensive set of spectral sensitivities in the animal kingdom and also what form of colour processing they may utilise.
  • Genome-wide study of DNA methylation shows alterations in metabolic, inflammatory, and cholesterol pathways in ALS

    Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease with an estimated heritability between 40 and 50%. DNA methylation patterns can serve as proxies of (past) exposures and disease progression, as well as providing a potential mechanism that mediates genetic or environmental risk. Here, we present a blood-based epigenome-wide association study meta-analysis in 9706 samples passing stringent quality control (6763 patients, 2943 controls). We identified a total of 45 differentially methylated positions (DMPs) annotated to 42 genes, which are enriched for pathways and traits related to metabolism, cholesterol biosynthesis, and immunity. We then tested 39 DNA methylation-based proxies of putative ALS risk factors and found that high-density lipoprotein cholesterol, body mass index, white blood cell proportions, and alcohol intake were independently associated with ALS. Integration of these results with our latest genome-wide association study showed that cholesterol biosynthesis was potentially causally related to ALS. Last, DNA methylation at several DMPs and blood cell proportion estimates derived from DNA methylation data were associated with survival rate in patients, suggesting that they might represent indicators of underlying disease processes potentially amenable to therapeutic interventions.
  • Comparison of seven modelling algorithms for γ‐aminobutyric acid–edited proton magnetic resonance spectroscopy

    Edited MRS sequences are widely used for studying γ-aminobutyric acid (GABA) in the human brain. Several algorithms are available for modelling these data, deriving metabolite concentration estimates through peak fitting or a linear combination of basis spectra. The present study compares seven such algorithms, using data obtained in a large multisite study. GABA-edited (GABA+, TE = 68 ms MEGA-PRESS) data from 222 subjects at 20 sites were processed via a standardised pipeline, before modelling with FSL-MRS, Gannet, AMARES, QUEST, LCModel, Osprey and Tarquin, using standardised vendor-specific basis sets (for GE, Philips and Siemens) where appropriate. After referencing metabolite estimates (to water or creatine), systematic differences in scale were observed between datasets acquired on different vendors' hardware, presenting across algorithms. Scale differences across algorithms were also observed. Using the correlation between metabolite estimates and voxel tissue fraction as a benchmark, most algorithms were found to be similarly effective in detecting differences in GABA+. An interclass correlation across all algorithms showed single-rater consistency for GABA+ estimates of around 0.38, indicating moderate agreement. Upon inclusion of a basis set component explicitly modelling the macromolecule signal underlying the observed 3.0 ppm GABA peaks, single-rater consistency improved to 0.44. Correlation between discrete pairs of algorithms varied, and was concerningly weak in some cases. Our findings highlight the need for consensus on appropriate modelling parameters across different algorithms, and for detailed reporting of the parameters adopted in individual studies to ensure reproducibility and meaningful comparison of outcomes between different studies.
  • TDP-43 represses cryptic exon inclusion in the FTD–ALS gene UNC13A

    A hallmark pathological feature of the neurodegenerative diseases amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD) is the depletion of RNA-binding protein TDP-43 from the nucleus of neurons in the brain and spinal cord1. A major function of TDP-43 is as a repressor of cryptic exon inclusion during RNA splicing2,3,4. Single nucleotide polymorphisms in UNC13A are among the strongest hits associated with FTD and ALS in human genome-wide association studies5,6, but how those variants increase risk for disease is unknown. Here we show that TDP-43 represses a cryptic exon-splicing event in UNC13A. Loss of TDP-43 from the nucleus in human brain, neuronal cell lines and motor neurons derived from induced pluripotent stem cells resulted in the inclusion of a cryptic exon in UNC13A mRNA and reduced UNC13A protein expression. The top variants associated with FTD or ALS risk in humans are located in the intron harbouring the cryptic exon, and we show that they increase UNC13A cryptic exon splicing in the face of TDP-43 dysfunction. Together, our data provide a direct functional link between one of the strongest genetic risk factors for FTD and ALS (UNC13A genetic variants), and loss of TDP-43 function.
  • Does the gut microbiome mediate antipsychotic-induced metabolic side effects in schizophrenia?

    Second-generation antipsychotics (SGAs) are the most effective treatment for people with schizophrenia. Despite their effectiveness in treating psychotic symptoms, they have been linked to metabolic, cardiovascular and gastrointestinal side-effects. The gut microbiome has been implicated in potentiating symptoms of schizophrenia, response to treatment, and medication-induced side effects and thus presents a novel target mediating second-generation antipsychotic-induced side effects in patients.
  • Unconscious influences on “free will” movement initiation: slow-wave brain stimulation and the readiness potential

    A central objective in the study of volition has been to identify how changes in neural activity relate to voluntary-"free will"-movement. The readiness potential (RP) is observed in the EEG as a slow-building signal that precedes action onset. Many consider the RP as a marker of an underlying preparatory process for initiating voluntary movement. However, the RP may emerge from ongoing slow-wave brain oscillations that influence the timing of movement initiation in a phase-dependent manner. Transcranial alternating current stimulation (tACS) enables brain oscillations to be entrained at the frequency of stimulation. We delivered tACS at a slow-wave frequency over frontocentral motor areas while participants (n = 30) performed a simple, self-paced button press task. During the active tACS condition, participants showed a tendency to initiate actions in the phase of the tACS cycle that corresponded to increased negative potentials across the frontocentral motor region. Comparisons of premovement EEG activity observed over frontocentral and central scalp electrodes showed earlier onset and increased amplitude of RPs from active stimulation compared with sham stimulation. This suggests that movement-related activity in the brain can be modulated by the delivery of weak, nonconsciously perceptible alternating currents over frontocentral motor regions. We present novel findings that support existing theories, which suggest the timing of voluntary movement is influenced by the phase of slow-changing oscillating brain states.
  • Methylome-wide association study of early life stressors and adult mental health

    The environment and events that we are exposed to in utero, during birth and in early childhood influence our future physical and mental health. The underlying mechanisms that lead to these outcomes are unclear, but long-term changes in epigenetic marks, such as DNA methylation, could act as a mediating factor or biomarker. DNA methylation data were assayed at 713 522 CpG sites from 9537 participants of the Generation Scotland: Scottish Family Health Study, a family-based cohort with extensive genetic, medical, family history and lifestyle information. Methylome-wide association studies of eight early life environment phenotypes and two adult mental health phenotypes (major depressive disorder and brief resilience scale) were conducted using DNA methylation data collected from adult whole blood samples. Two genes involved with different developmental pathways (PRICKLE2, Prickle Planar Cell Polarity Protein 2 and ABI1, Abl-Interactor-1) were annotated to CpG sites associated with preterm birth (P < 1.27 × 10-9). A further two genes important to the development of sensory pathways (SOBP, Sine Oculis Binding Protein Homolog and RPGRIP1, Retinitis Pigmentosa GTPase Regulator Interacting Protein) were annotated to sites associated with low birth weight (P < 4.35 × 10-8). The examination of methylation profile scores and genes and gene-sets annotated from associated CpGs sites found no evidence of overlap between the early life environment and mental health conditions. Birth date was associated with a significant difference in estimated lymphocyte and neutrophil counts. Previous studies have shown that early life environments influence the risk of developing mental health disorders later in life; however, this study found no evidence that this is mediated by stable changes to the methylome detectable in peripheral blood.