Computational, systems and developmental neuroscience

Professor Goodhill’s laboratory is interested in how brains process information, particularly during development.

A current area of focus is the development of neural coding, i.e. how patterns of neural activity come to represent information about the world as an organism develops. To study this, the lab is using the zebrafish as a model system. Zebrafish larvae display complex behaviours from an early age, and are transparent allowing the activity of large numbers of neurons to be simultaneously recorded.

In conjunction with these experiments, we are developing new statistical tools for analysing these data, and new mathematical/computational models to help test hypotheses about the biological mechanisms that drive these changes over development.

Group leader

Professor Geoffrey Goodhill

Professor Geoffrey Goodhill

NHMRC Leadership Fellow, Queensland Brain Institute

  Goodhill lab website
  +61 7 334 66431
  UQ Researcher Profile



Moelter, J., Avitan, L. & Goodhill, G.J. (2018). Detecting neural assemblies in calcium imaging data. BMC Biology, in press.

Triplett, M.A., Avitan, L. & Goodhill, G.J. (2018). Emergence of spontaneous assembly activity in developing neural networks without afferent input. PLoS Computational Biology14:e1006421. PDF 

Goodhill, G.J. (2018). Theoretical models of neural development. iSciencePDF 

Bicknell, B.A., Pujic, Z., Feldner, J., Vetter, I. & Goodhill, G.J. (2018). Chemotactic responses of growing neurites to precisely controlled gradients of nerve growth factor. Scientific Data5:180183 PDF 

Avitan, L. & Goodhill, G.J. (2018). Code under construction: neural coding over development. Trends in Neurosciences41, 599-609. PDF 

Bicknell, B.A., Pujic, Z., Dayan, P. & Goodhill, G.J. (2018). Control of neurite growth and guidance by an inhibitory cell-body signal. PLoS Computational Biology14, e1006218. PDF

Marachlian, E., Avitan, L., Goodhill, G.J & Sumbre, G. (2018). Principles of functional circuit connectivity: insights from spontaneous activity in the zebrafish optic tectum. Frontiers in Neural Circuits12:46. PDF

Padmanabhan, P. & Goodhill, G.J. (2018). Axon growth regulation by a bistable molecular switch. Proceedings of the Royal Society Series B285:20172618. PDF


Avitan, L., Pujic, Z., Moelter, J., Van De Poll, M., Sun, B., Teng, H., Amor, R., Scott, E.K. & Goodhill, G.J. (2017). Spontaneous activity in the zebrafish tectum reorganizes over development and is influenced by visual experience. Current Biology27, 2407-2419. PDF

Hughes, N.J. & Goodhill, G.J. (2017). Multiple cortical feature maps in a joint Gaussian process prior. IEEE Transactions on Pattern Analysis and Machine Intelligence39, 1918-1928. PDF

Abbas, F., Triplett, M.A., Goodhill, G.J. & Meyer, M.P. (2017). A three-layer network model of direction selective circuits in the optic tectum.Frontiers in Neural Circuits11:88. PDF

Joensuu M., Martinez-Marmol, R., Padmanabhan, P., Glass, N.R., Durisic, N., Pelekanos, M., Mollazade, M., Balistreri, G., Amor, R., Cooper-White, J.J., Goodhill, G.J. & Meunier, F. (2017). Visualizing endocytic recycling and trafficking in live neurons by subdiffractional tracking of internalized molecules. Nature Protocols12, 2590-2622. PDF

Bademosi, A.T., Lauwers, E., Padmanabhan, P., Odierna, L., Chai, Y.J., Papadopulos, A., Goodhill, G.J., Verstreken, P., van Swinderen, B. and Meunier, F.A. (2017). In vivo single molecule imaging of syntaxin1A reveals polyphosphoinositide- and activity-dependent reversible trapping in presynaptic nanoclusters. Nature Communications8:13660. PDF


Bicknell, B.A. & Goodhill, G.J. (2016). The emergence of ion channel modal gating from independent subunit kinetics. Proc. Natl. Acad. Sci. USA113, E5288-97. PDF 

Cloherty, S.J., Hughes, N.J., Hietanen, M.A., Bhagavatula, P.S., Goodhill, G.J. & Ibbotson, M.R. (2016). Sensory experience modifies feature map relationships in visual cortex. eLife5:e13911. PDF 

Avitan, L., Pujic, Z., Hughes, N.J., Scott, E.K. & Goodhill, G.J. (2016). Limitations of neural map topography for decoding spatial information. Journal of Neuroscience36, 5385-5396. PDF 

Goodhill, G.J. (2016). Can molecular gradients wire the brain? Trends in Neurosciences39, 202-211. PDF 

Chalmers, K., Kita, E.M., Scott, E.K. & Goodhill, G.J. (2016). Quantitative analysis of axonal branch dynamics in the developing nervous system. PLoS Computational Biology12:e1004813. PDF 

Pujic, Z., Nguyen, H., Glass, N., Cooper-White, J. & Goodhill, G.J. (2016). Axon guidance studies using a microfluidics-based chemotropic gradient generator. Methods in Molecular Biology1407, 273-285. PDF 

Joensuu, M., Padmanabhan, P., Durisic, N., Bademosi, A.T.D., Cooper-Williams, E., Morrow, I.C., Harper, C.B., Jung, W., Parton, R.G., Goodhill, G.J., Papadopulos, A. & Meunier, F.A. (2016). Subdiffractional tracking of internalized molecules reveals heterogeneous motion states of synaptic vesicles. Journal of Cell Biology215, 277-292. PDF


Bicknell, B.A., Dayan, P. & Goodhill, G.J. (2015). The limits of chemosensation vary across dimensions. Nature Communications6, 7468. PDF 

Goodhill, G.J., Faville, R.A., Sutherland, D.J., Bicknell, B.A., Thompson, A.W., Pujic, Z., Sun, B., Kita, E.M. & Scott, E.K. (2015). The dynamics of growth cone morphology. BMC Biology13, 10. PDF 

Kita, E.M., Scott, E.K. & Goodhill, G.J. (2015). Topographic wiring of the retinotectal connection in zebrafish. Developmental Neurobiology75, 542-556. PDF 

Kita, E.M., Scott, E.K. & Goodhill, G.J. (2015). The influence of activity on axon pathfinding in the optic tectum. Developmental Neurobiology75, 608-620. PDF 

Hughes, N.J. & Goodhill, G.J. (2015). Optimizing the representation of orientation preference maps in visual cortex. Neural Computation27, 32-41. PDF Code 

Sutherland, D.J. & Goodhill, G.J. (2015). The interdependent roles of calcium and cAMP in axon guidance. Developmental Neurobiology75, 402-410. PDF 

Faville, R.J., Kottler, B., Goodhill, G.J., Shaw, P. & van Swinderen, B. (2015). How deeply does your mutant sleep? Probing arousal to better understand sleep defects in Drosophila. Scientific Reports,5, 8454. PDF


Suarez, R., Fenlon, L.R., Marek, R., Avitan, L., Sah, P., Goodhill, G.J. & Richards, L.J. (2014). Balanced interhemispheric cortical activity is required for correct targeting of the corpus callosum. Neuron82, 1289-1298. PDF 

Sutherland, D.J., Pujic, Z. & Goodhill, G.J. (2014). Calcium signaling in axon guidance. Trends in Neurosciences37, 424–432. PDF 

Fothergill, T., Donahoo, A-L.S., Douglass, A., Zalucki, O., Yuan, J., Shu, T., Goodhill, G.J. & Richards, L.J. (2014). Netrin-DCC signaling regulates corpus callosum formation through attraction of pioneering axons and by modulating Slit2-mediated repulsion. Cerebral Cortex24, 1138–1151. PDF 

Hughes, N.J., Hunt, J.J., Cloherty, S.L., Ibbotson, M.R., Sengpiel, F. & Goodhill, G.J. (2014). Stripe-rearing changes multiple aspects of the structure of primary visual cortex. Neuroimage95, 305-319. PDF 

Nguyen, H., Dayan, P. & Goodhill, G.J. (2014). How receptor diffusion influences gradient sensing. Journal of the Royal Society Interface12, 20141097 PDF 

Nguyen, H., Dayan, P. & Goodhill, G.J. (2014). The influence of receptor positioning on chemotactic information. Journal of Theoretical Biology360, 95-101. PDF 

Giacomantonio, C.E. & Goodhill, G.J. (2014). A computational model of the effect of gene misexpression on the development of cortical areas. Biological Cybernetics108, 203-221. PDF 

Davis, F.M., Azimi, I. Faville, R.A., Peters, A.A., Goodhill, G.J., Thompson, E.W., Roberts-Thomson, S.J. & Monteith, G.R. (2014). Induction of epithelial-mesenchymal transition (EMT) in breast cancer cells is calcium signal dependent. Oncogene33, 2307-2316. PDF


Hunt, J.J., Dayan, P. & Goodhill, G.J. (2013). Sparse coding can predict primary visual cortex receptive field changes induced by abnormal visual input. PLoS Computational Biology9, e1003005. PDF 

Simpson, H.D., Kita, E.M., Scott, E.K. & Goodhill, G.J. (2013). A quantitative analysis of branching, growth cone turning and directed growth in zebrafish retinotectal axon guidance. Journal of Comparative Neurology521, 1409-1429. PDF 

Yuan, J., Chan, S., Mortimer, D., Nguyen, H. & Goodhill, G.J. (2013). Optimality and saturation in axonal chemotaxis. Neural Computation25, 833-853 (2013). PDF 

Pujic, Z. & Goodhill, G.J. (2013). A dual compartment diffusion chamber for studying axonal chemotaxis in 3D collagen. Journal of Neuroscience Methods215, 53-59. PDF


Forbes, E.M., Thompson, A.W., Yuan, J, & Goodhill, G.J. (2012). Calcium and cAMP levels interact to determine attraction versus repulsion in axon guidance. Neuron74, 490-503. PDF SI 

Hunt, J.J., Mattingley, J.B. & Goodhill, G.J. (2012). Randomly oriented edge arrangements dominate naturalistic arrangements in binocular rivalry. Vision Research64, 49-55. PDF 

Hunt, J.J., Ibbotson, M.R. & Goodhill, G.J. (2012). Sparse coding on the spot: spontaneous retinal waves suffice for orientation selectivity.Neural Computation24, 2422-2433. PDF


Forbes, E.M., Hunt, J.J. & Goodhill, G.J. (2011). The combinatorics of neurite self-avoidance. Neural Computation23, 2746-2769. PDF 

Thompson, A.W., Pujic, Z., Richards, L.J. & Goodhill, G.J. (2011). Cyclic nucleotide-dependent switching of mammalian axon guidance depends on gradient steepness. Molecular and Cellular Neuroscience47, 45-52. PDF 

Simpson, H.D. & Goodhill, G.J. (2011). A simple model can unify a broad range of phenomena in retinotectal map development. Biological Cybernetics104, 9-29. PDF F1000 review 

Simpson, H.D., Giacomantonio, C.E. & Goodhill, G.J. (2011). Computational modeling of neuronal map development: insights into disease.Future Neurology6, 339-349. PDF 

Hunt, J.J., Bosking, W.H. & Goodhill, G.J. (2011). Statistical structure of lateral connections in the primary visual cortex. Neural Systems & Circuits1:3. PDF 

Mortimer, D., Dayan, P., Burrage, K. & Goodhill, G.J. (2011). Bayes-optimal chemotaxis. Neural Computation23, 336-373. PDF


Mortimer D, Pujic Z, Vaughan T, Thompson AW, Feldner J, Vetter I, Pujic Z, & Goodhill GJ (2010). Axon guidance by growth rate modulation.Proc. Natl. Acad. Sci. USA107, 5202-5207. PDF SI 

Giacomantonio, C.E. & Goodhill, G.J. (2010). A Boolean model of the gene regulatory network underlying mammalian cortical area development. PLoS Computational Biology6: e1000936. PDF 

Giacomantonio, C.E., Ibbotson, M.R. & Goodhill, G.J. (2010). The influence of restricted orientation on map structure in primary visual cortex.Neuroimage52, 875-883. PDF 

Mortimer, D., Dayan, P., Burrage, K. & Goodhill, G.J. (2010). Optimizing chemotaxis by measuring unbound-bound transitions. Physica D239, 477-484. PDF F1000 review 

Vetter, I., Pujic, Z. & Goodhill, G.J. (2010). The response of dorsal root ganglion axons to nerve growth factor gradients depends on spinal level.Journal of Neurotrauma27, 1379-1386. PDF 

Haines, C.E. & Goodhill, G.J. (2010). Analyzing neurite outgrowth from explants by fitting ellipses. Journal of Neuroscience Methods187, 52-58. PDF


Mortimer D, Feldner J, Vaughan T, Vetter I, Pujic Z, Rosoff WJ, Burrage K, Dayan P, Richards LJ, Goodhill GJ (2009). A Bayesian model predicts the response of axons to molecular gradients. Proc. Natl. Acad. Sci. USA106, 10296-10301. PDF SI 

Hunt, J.J., Giacomantonio, C.E., Tang, H., Mortimer, D., Jaffer, S.,Vorobyov, V., Ericksson, G., Sengpiel, F. & Goodhill, G.J. (2009). Natural scene statistics and the structure of orientation maps in the visual cortex. Neuroimage47, 157-172. PDF 

Pujic, Z., Mortimer, D., Feldner, J. & Goodhill, G.J. (2009). Assays for Eukaryotic Cell Chemotaxis. Combinatorial Chemistry and High-throughput Screening12, 580-588. PDF 

Simpson, H, Mortimer, D. & Goodhill, G.J. (2009). Theoretical models of neural circuit development. Current Topics in Development Biology87, 1-51. PDF 

Rosoff, W.J., McAllister, R.G., Goodhill, G.J. & Urbach, J.S. (2009). Quantitative Studies of Neuronal Chemotaxis in 3D. Methods in Molecular Biology571, 239-254. PDF


Mortimer, D., Fothergill, T., Pujic, Z., Richards, L.J. & Goodhill, G.J. (2008). Growth Cone Chemotaxis. Trends in Neurosciences31, 90-98.PDF 

Pujic, Z., Giacomantonio, C.E., Unni, D., Rosoff, W.J. & Goodhill, G.J. (2008). Analysis of the growth cone turning assay for studying axon guidance. Journal of Neuroscience Methods170, 220-228. PDF


Goodhill, G.J. (2007). Contributions of theoretical modelling to the understanding of neural map development. Neuron56, 301-311. PDF 

Giacomantonio, C.E. & Goodhill, G.J. (2007). The effect of angioscotomas on map structure in primary visual cortex. Journal of Neuroscience27, 4935-4946. PDF 

NOTE: In 2005 my lab relocated from Georgetown University to the University of Queensland.


Xu, J., Rosoff, W.J., Urbach, J,S. & Goodhill, G.J. (2005). Adaptation is not required to explain the long-term response of axons to molecular gradients. Development132, 4545-4552. PDF 

Carreira-Perpinan, M.A., Lister, R. & Goodhill, G.J. (2005). A computational model for the development of multiple maps in primary visual cortex. Cerebral Cortex15, 1222-1233. PDF 

Goodhill, G.J. & Xu, J. (2005). The development of retinotectal maps: a review of models based on molecular gradients. Network16, 5-34. PDF

Rosoff, W.J, McAllister, R.G., Esrick, M.A., Goodhill, G.J. & Urbach, J.S. (2005). Generating controlled molecular gradients in 3D gels. Biotechnology and Bioengineering91, 754-759. PDF


Rosoff, W.J., Urbach, J.S., Esrick, M., McAllister, R.G. Richards, L.J. & Goodhill, G.J. (2004). A new chemotaxis assay shows the extreme sensitivity of axons to molecular gradients. Nature Neuroscience7, 678-682. PDF News and Views F1000 reviews 
NOTE: An Erratum correcting production errors in Fig 3 was published in the July issue. The PDF file above now includes this Erratum. The original RGB images for Fig 3 are available here: fig3d.tif fig3e.tif fig3f.tif fig3g.tif

Goodhill, G.J., Gu, M. & Urbach, J.S. (2004). Predicting axonal response to molecular gradients with a computational model of filopodial dynamics. Neural Computation16, 2221-2243. PDF 

Carreira-Perpinan, M.A. & Goodhill, G.J. (2004). The influence of lateral connections on the structure of cortical maps. Journal of Neurophysiology92, 2947-2959. PDF

2003 and earlier

Goodhill, G.J. (2003). A theoretical model of axon guidance by the Robo code. Neural Computation15, 549-564. PDF F1000 review 

Carreira-Perpinan, M.A. & Goodhill, G.J. (2002). Are visual cortex maps optimized for coverage? Neural Computation14, 1545-1560. PDF 

Haese, K. & Goodhill, G.J. (2001). Auto-SOM: Recursive Parameter Estimation for Guidance of Self-Organizing Feature Maps. Neural Computation 13, 595-619. PDF 

Cimponeriu, A. & Goodhill, G.J. (2000). Dynamics of cortical map development in the elastic net model. Neurocomputing32, 83-90. PDF 

Goodhill, G.J. & Cimponeriu, A. (2000). Analysis of the elastic net model applied to the formation of ocular dominance and orientation columns. Network11, 153-168. PDF 

Goodhill, G.J. (2000). Dating behavior of the retinal ganglion cell. Neuron25, 501-503. PDF 

Goodhill, G.J. & Richards, L.J. (1999). Retinotectal maps: molecules, models, and misplaced data. Trends in Neurosciences, 22, 529-534. PDF 

Goodhill, G.J. & Urbach, J.S. (1999). Theoretical analysis of gradient detection by growth cones. Journal of Neurobiology, 41, 230-241. PDF 

Urbach, J.S. & Goodhill, G.J. (1999). Limitations on detection of gradients of diffusible chemicals by axons. Neurocomputing, 26-27, 39-43. PDF 

Goodhill, G.J. (1998). The influence of neural activity and intracortical connections on the periodicity of ocular dominance stripes. Network, 9, 419-432. PDF 

Goodhill, G.J. (1998). Mathematical guidance for axons. Trends in Neurosciences, 21, 226-231. PDF. 

Goodhill, G. J. & Baier, H. (1998). Axon guidance: stretching gradients to the limit. Neural Computation10, 521-527. PDF. 

Goodhill, G.J. (1997). Stimulating issues in cortical map development. Trends in Neurosciences, 20, 375-376. PDF. 

Goodhill, G.J. & Sejnowski, T. J. (1997). A unifying objective function for topographic mappings. Neural Computation, 9, 1291-1304. PDF 

Goodhill, G.J. (1997). Diffusion in axon guidance. European Journal of Neuroscience9, 1414 - 1421. PDF 

Goodhill, G.J., Bates, K.R. & Montague, P.R. (1997). Influences on the global structure of cortical maps. Proceedings of the Royal Society, Series B264, 649-655. PDF 

Goodhill, G.J. & Lowel, S. (1995). Theory meets experiment: correlated neural activity helps determine ocular dominance column periodicity.Trends in Neurosciences, 18, 437-439. PDF 

Goodhill, G.J., Simmen, M., & Willshaw, D.J. (1995). An evaluation of the use of Multidimensional Scaling for understanding brain connectivity. Philosophical Transactions of the Royal Society, Series B, 348, 265-280. PDF 

Simmen, M., Goodhill, G.J. & Willshaw, D.J. (1994). Scaling and brain connectivity. Nature369, 448-450. PDF 

Goodhill, G.J. & Willshaw, D.J. (1994). Elastic net model of ocular dominance: Overall stripe pattern and monocular deprivation. Neural Computation6, 615-621. PDF 

Goodhill, G.J. & Barrow, H.G. (1994). The role of weight normalization in competitive learning. Neural Computation6, 255-269. PDF 

Goodhill, G.J. (1993). Topography and ocular dominance: a model exploring positive correlations. Biological Cybernetics69, 109-118. PDF 

Goodhill, G.J. & Willshaw, D.J. (1990). Application of the elastic net algorithm to the formation of ocular dominance stripes. Network1, 41-59.PDF 

Encyclopedia Articles and Book Chapters

Goodhill, G.J. (2013). Cortical maps, intrinsic processes of development. In: Jaeger D., Jung R. (Ed.) Encyclopedia of Computational Neuroscience: SpringerReference ( Springer-Verlag Berlin Heidelberg. Goodhill, G.J. (2013). Axonal growth and guidance. Scholarpedia, 8(10):1663. Link to article 

Mortimer, D., Simpson, H.D. & Goodhill, G.J. (2012). Axonal growth and targeting. In: Le Novere, N (ed.) Computational Systems Neurobiology, Springer. PDF 

Mortimer, D. & Goodhill, G.J. (2009). Axonal pathfinding. In: Squire LR (ed.) Encyclopedia of Neuroscience1, 1133-1138. Oxford: Academic Press. PDF 

Goodhill, G.J. & Urbach, J.S. (2003). Axon guidance and gradient detection by growth cones. In ``Modeling Neural Development'', ed. Arjen Van Ooyen, MIT Press, 95-109. 

Goodhill, G.J. (2002). Axonal path finding, in ``The Handbook of Brain Theory and Neural Networks'', 2nd edition, ed. Michael Arbib, MIT Press, 140-143. 

Goodhill, G.J. (2002). Development of retinotectal maps, in ``The Handbook of Brain Theory and Neural Networks'', 2nd edition, ed. Michael Arbib, MIT Press, 335-339. 

Goodhill, G.J. (2002). Neural development: mechanisms and models. International Encyclopedia of the Social and Behavioral Sciences, Elsevier, 10522-10526. PDF 

Goodhill, G.J. (2002). Models of neural development. Encyclopedia of Cognitive Science, Macmillan, 3, 261-267. PDF 

Goodhill, G.J. & Carreira-Perpinan, M.A. (2002). Cortical columns. Encyclopedia of Cognitive Science, Macmillan, 1, 845-851. PDF 

Carreira-Perpinan, M.A. & Goodhill, G.J. (2002). Development of columnar structure in primary visual cortex. In ``Computational Neuroanatomy: Methods and Principles'', ed. Georgio Ascoli, Humana Press, 337-357. Zamora-Ramos, C. & Goodhill, G.J. (1994). A neural computation: spatial to temporal transformation. In Information Processing Underlying Gaze Control, eds. J.M. Delgado-Garcia, E. Godaux and P.-P. Vidal, 125-137, Pergamon. 

Conference proceedings

Huang, J.Y., Hughes, N.J. & Goodhill, G.J. (2016). Segmenting neuronal growth cones using deep convolutional neural networks. 2016 International Conference on Digital Image Computing: Techniques and Applications (DICTA), Gold Coast, QLD, 2016, pp. 1-7. PDF 

Carreira-Perpinan, M.A., Dayan, P. & Goodhill, G.J. (2005). Differential priors for elastic nets. M. Gallagher, J. Hogan, F. Maire (Eds.): IDEAL 2005, Lecture Notes in Computer Science 3578, 335-342, 2005. PDF 

Goodhill, G.J. (1998). A mathematical model of axon guidance by diffusible factors. Advances in Neural Information Processing Systems10, M.I. Jordan, M.J. Kearns & S.A. Solla, eds, MIT Press, 159-165. PDF 

Goodhill, G.J. (1998). Gradients for retinotectal mapping. Advances in Neural Information Processing Systems10, M.I. Jordan, M.J. Kearns & S.A. Solla, eds, MIT Press, 152-158. PDF 

Goodhill, G.J. and Sejnowski, T.J. (1997). Objective functions for topography: a comparison of optimal maps. In Proceedings of the Fourth Neural Computation and Psychology Workshop: Connectionist Representations, eds. John A. Bullinaria, David G. Glasspool & George Houghton. London: Springer-Verlag. PDF 

Goodhill, G.J. and Sejnowski, T.J. (1996). Quantifying neighbourhood preservation in topographic mappings. Proceedings of the 3rd Joint Symposium on Neural Computation, University of California, San Diego and California Institute of Technology, 6, Pasadena, CA: California Institute of Technology, 61-82. Postscript. 

Goodhill, G. J., Finch, S. and Sejnowski, T. J. (1996). Optimizing cortical mappings. Advances in Neural Information Processing Systems8, eds. David S. Touretzky, Michael C. Mozer and Michael E. Hasselmo, MIT Press: Cambridge, MA, 330-336. Postscript. 

Goodhill, G. J., Finch, S. and Sejnowski, T. J. (1995). A unifying measure for neighbourhood preservation in topographic mappings,Proceedings of the 2nd Joint Symposium on Neural Computation, University of California, San Diego and California Institute of Technology, 5, Institute for Neural Computation, La Jolla, CA, 191-202. Postscript. 

Aguilar-Chongtay, R., Goodhill, G.J. & Hayes, G. (1993). Exploracion empirica de un modelo de desarrollo de columnas de dominancia ocular.Memorias de Reunion Nacional de Inteligencia Artificial, Mexico, 1993

Goodhill, G.J. (1993). Topography and ocular dominance with positive correlations. Advances in Neural Information Processing Systems5, eds. C.L. Giles, S.J. Hanson and J.D. Cowan, Morgan Kaufmann, San Mateo, CA (1993), 985-992. Postscript. 

Dayan, P.S. & Goodhill, G.J. (1992) Perturbing Hebbian rules. Advances in Neural Information Processing Systems4, 19-26, eds. J.E. Moody, S.J. Hanson and R.P. Lippman, Morgan Kaufmann, San Mateo, CA. PDF. 

Goodhill, G.J. (1991). Topography and ocular dominance can arise from distributed patterns of activity. International Joint Conference on Neural Networks, Seattle, July 1991II, 623-627. 

Goodhill, G.J. (1990). The development of topography and ocular dominance. In Touretzky, D.S., Elman, J.L., Sejnowski, T.J. & Hinton, G.E. (eds.) Proceedings of the 1990 Connectionist Models Summer School, 338-349, San Mateo, CA: Morgan Kaufman. 

Book Reviews

Chitnis, A.B. & Goodhill, G.J. (2001). Review of "Signs of Life-How Complexity Pervades Biology" By R. Sole & B. Goodwin, Basic Books, 2001. Cell105, 328-329. PDF 

Richards, L.J. & Goodhill, G.J. (2001). Review of ``Mechanisms of Cortical Development'' by D.J. Price & D.J. Willshaw, Oxford, 2000. Nature Neuroscience4, 13. PDF 

Goodhill, G.J. (1998). Review of ``Neural Organization: Structure, Function and Dynamics'' by M.A. Arbib, P. Erdi & J. Szentagothai, MIT Press, 1998. Neuron20, 833-834. PDF 

Goodhill, G.J. (1996). Review of ``How we learn; how we remember: towards an understanding of brain and neural systems. Selected papers of Leon N. Cooper'', World Scientific Publishing Co Ltd, 1995. Journal of Chemical Neuroanatomy11, 284-285. 

Technical Reports and arXiv

Carreira-Perpinan, M.A. & Goodhill, G.J. (2003/2011). Generalized elastic nets. arXiv:1108.2840. PDF. 

Goodhill, G. J., Finch, S. and Sejnowski, T. J. (1995). Quantifying neighbourhood preservation in topographic mappings. Institute for Neural Computation Technical Report Series, No. INC-9505, November 1995. Postscript. 

Goodhill, G.J., Simmen, M., & Willshaw, D.J. (1994). An evaluation of the use of Multidimensional Scaling for understanding brain connectivity. Edinburgh University Centre for Cognitive Science Research Paper EUCCS / RP-63. Postscript. 

Goodhill, G.J. (1992). Correlations, Competition and Optimality: Modelling the Development of Topography and Ocular Dominance. Cognitive Science Research Paper CSRP 226, University of Sussex. (This is based on my PhD thesis). PDF

  • Peter Dayan - University College London
  • Frank Sengpiel-  University of Cardiff
  • Michael Ibbotson - Melbourne University
  • Linda Richards - The University of Queensland
  • Ethan Scott - The University of Queensland
  • Fred Meunier - The University of Queensland
  • Markus Barth - The University of Queensland

Prospective candidates should have a strong background in either neuroscience or maths/physics/engineering. Some potential PhD projects include the following (please read our recent papers for more details):

Project 1: Using fluorescent calcium indicators to visualise how neural activity develops in the zebrafish brain.

Project 2:  Using a variety of mathematical/statistical approaches to analyse and model these data.

Project 3:  Computational modelling of how nerve fibres are guided to their targets during neural development.

Project 4:  Computational modelling of neural map formation.


How to apply

Our team

Group Leader

Research Members