Neural circuits and behaviour

The Dickson laboratory investigates the neural circuits that control walking in the fruit fly, Drosophila melanogaster. The goal is to understand how local circuits in the nerve cord produce rhythmic motor patterns, how these patterns are co-ordinated across each leg joint and all six legs, and how descending signals from the brain modulate these operations to alter the fly's direction, speed and gait.

The lab started operation at QBI in August 2015. The immediate task was to set up the equipment needed to measure and manipulate neuronal activity in the live nerve cord. Genetically encoded activity reporters and modulators, together with fast volumetric imaging, make it possible to simultaneously monitor the activity of large populations of neurons while acutely manipulating the output of one specific cell type. With this approach, it should be possible to systematically explore the operating principles of the locomotor circuits in the fly's central nervous system.

This system was almost fully functional by year's end, so that the group can now focus on three complementary goals: (1) further expanding the collection of genetic tools that can be used to target activity modulators and reporters to specific cell types, (2) investigating how activity patterns in the nerve cord respond to a descending signal that triggers backward walking, and (3) searching for a complementary descending pathway that initiates forward walking.

Group leader

Professor Barry Dickson

Professor Barry Dickson

Professor, Queensland Brain Institute

  +61 7 334 66328
  b.dickson@uq.edu.au
  UQ Researcher Profile

Research Areas

  • Female mating decisions
  • Brain-body communication
  • Visually-guided navigation during walking

Our team

Group Leader

 


Research Members


Students


Support Staff