Associate Professor Martin Sale
Researcher biography
The human nervous system is no longer thought of has hard-wired, and is in fact capable of rapid change throughout life. This plasticity is important for learning, memory and recovery from brain injury. I am interested in using emerging brain stimulation and imaging techniques to "artificially" induce plasticity in the human brain, to ultimately improve the treatment outcomes for various neurological conditions, particularly stroke. These stimulation techniques include transcranial magnetic stimulation (TMS) and transcranial direct current stimulation (tDCS).
I completed a BSc in 1994 and received a First Class Honours in Physiology in 1995 from the University of Adelaide. I then completed a Bachelor of Physiotherapy Degree at the University of South Australia. Returning to research in 2005, I undertook a PhD at the University of Adelaide, which I completed in 2009. My doctoral studies focussed on a new and exciting area of neuroscience – neuroplasticity. At the time of commencing my PhD, it was becoming clear that various non-invasive brain stimulation techniques (such as TMS) were able to temporarily reorganise the circuitry in the human brain in a similar way to what happens when we learn something new or store a memory. I was interested in trying to understand why some people responded to these stimulation paradigms, and others didn't. What I discovered was that it an important driver of plasticity in humans was when the stimulation was delivered. In effect, the brain seemed to learn better at night time compared to the morning. This has important clinical implications, as it suggests that rehabilitation might be more effective at a certain time of day.
I was awarded a University of Queensland Postdoctoral Fellowship in 2010, and then a NH&MRC Postdoctoral Research Fellowship in 2011 to investigate more intensely how the brains of stroke patients rewire. I am using state-of-the-art stimulation and imaging techniques such as TMS, magnetic resonance imaging (MRI) and electroencephalography (EEG) to understand how the brain reorganises when it stores information, and how we can boost this process.
I am currently an Associate Professor and Head of Physiotherapy within the School of Health and Rehabilitation Sciences at UQ. I head my own brain stimulation and imaging laboratory, and am conducting experiments in the following areas:
a) investigating the link between brain oscillations, sleep, plasticity and ageing;
b) improving hazard perception with brain sitmulation;
c) identifying factors that improve neuroplasticity induction in health and disease.