Neural circuit and behaviour

The human brain is composed of billions of neurons, which connect to form numerous microcircuits. These microcircuits then wire together to form a complicated neural network which encodes diverse behaviours. However, due to the huge number of the neurons and the complexity of the interconnections within the brain, it is still poorly understood how different neurons form a micro neural circuit, how different circuit motifs integrate neural information, how multiple circuits form a small neural network, and how this neural network encodes behaviours under healthy and diseased states.

The Li group uses C. elegans, currently the only organism with a completely mapped connectome, to address these questions. We employ multifaceted approaches including calcium imaging, optogenetics, behavioural genetic screen and molecular genetics to study the function and dysfunction of neural network in healthy and diseased animals.

Group leader

Dr Zhaoyu Li

Dr Zhaoyu Li

Bartlett Fellow, Queensland Brain Institute

  +61 7 334 66300
  UQ Researcher Profile

  • Professor Xuejun Song (Southern University of Science and Technology [SUSTech], Shenzhen, China)
  • Professor Shawn Xu (University of Michigan, Ann Arbor, US)
  • Dr. Jie Liu (Monash University, Melbourne, Australia)

Maeder, CI, Kim, J, Liang, X, Kaganovsky, K, Shen, A, Li, Q, Li, Z, Wang, S, Xu, XZS & Li, JB et al. 2018, ‘The THO Complex Coordinates Transcripts for Synapse Development and Dopamine Neuron Survival’, Cell, vol. 174, no. 6, pp. 1436–1449.e20, doi:10.1016/j.cell.2018.07.046

Rauthan, M, Gong, J, Liu, J, Li, Z, Wescott, SA, Liu, J & Xu, XZS 2017, ‘MicroRNA Regulation of nAChR Expression and Nicotine- Dependent Behavior in C. elegans’, Cell Reports, vol. 21, no. 6, pp. 1434–1441, doi:10.1016/j.celrep.2017.10.043

Li, Z, Iliff, AJ & Xu, XZS 2016, ‘An Elegant Circuit for Balancing Risk and Reward’, Neuron, vol. 92, no. 5, pp. 933–935, doi:10.1016/j.neuron.2016.11.041

Wang, W, Qin, L, Wu, T, Ge, C, Wu, Y, Zhang, Q, Song, Y, Chen, Y, Ge, M & Wu, J et al. 2016, ‘cGMP Signalling Mediates Water Sensation (Hydrosensation) and Hydrotaxis in Caenorhabditis elegans’, Scientific Reports, vol. 6, no. 1, doi:10.1038/srep19779

Hardaway, JA, Sturgeon, SM, Snarrenberg, CL, Li, Z, Xu, XZS, Bermingham, DP, Odiase, P, Spencer, WC, Miller, DM & Carvelli,L et al. 2015, ‘Glial Expression of the Caenorhabditis elegans Gene swip-10 Supports Glutamate Dependent Control of Extrasynaptic Dopamine Signaling’, Journal of Neuroscience, vol. 35, no. 25, pp. 9409–9423, doi:10.1523/jneurosci.0800-15.2015

Wang, W, Xu, Z, Wu, Y, Qin, L, Li, Z & Wu, Z 2015, ‘Off-response in ASH neurons evoked by CuSO4 requires the TRP channel OSM-9 in Caenorhabditis elegans’, Biochemical and Biophysical Research Communications, vol. 461, no. 3, pp. 463– 468, doi:10.1016/j.bbrc.2015.04.017

Li, Z, Liu, J, Zheng, M & Shawn Xu, XZ 2014, ‘Encoding of Both Analog- and Digital-like Behavioral Outputs by One C. elegans Interneuron’, Cell, vol. 159, no. 4, pp. 751–765, doi:10.1016/j.cell.2014.09.056

Huang, W, Li, Z, Xu, Y, Wang, W, Zhou, M, Zhang, P, Liu, P, Xu, T & Wu, Z 2014, ‘PKG and NHR-49 signalling coordinately regulate short-term fasting-induced lysosomal lipid accumulation inC. elegans’, Biochemical Journal, vol. 461, no. 3, pp. 509–520, doi:10.1042/bj20140191

Wang, J, Li, Z, Xu, Z, Hu, L, Feng, X, Chen, M, Du, W, Wu, Z, Luo, Q & Xu, T et al. 2013, ‘Development of an integrated microfluidic device for evaluating of in vivo chemo-sensing of intact Caenorhabditis elegans’, Sensors and Actuators B: Chemical, vol. 178, pp. 343–349, doi:10.1016/j.snb.2012.12.102

Li, Z, Li, Y, Yi, Y, Huang, W, Yang, S, Niu, W, Zhang, L, Xu, Z, Qu, A & Wu, Z et al. 2012, ‘Dissecting a central flip-flop circuit that integrates contradictory sensory cues in C. elegans feeding regulation’, Nature Communications, vol. 3, no. 1, doi:10.1038/ncomms1780

Chen, M, Yang, S, Niu, W, Li, Z, Meng, L & Wu, Z 2010, ‘A novel fluorescent timer based on bicistronic expression strategy in Caenorhabditis elegans’, Biochemical and Biophysical Research Communications, vol. 395, no. 1, pp. 82– 86, doi:10.1016/j.bbrc.2010.03.1431

Li, Z, Zhou, W, Wu, Z, Zhang, R & Xu, T 2009, ‘Fabrication of size-controllable ultrasmall-disk electrode: Monitoring single vesicle release kinetics at tiny structures with high spatio-temporal resolution’, Biosensors and Bioelectronics, vol. 24, no. 5, pp. 1358–1364, doi:10.1016/j.bios.2008.07.073

Please contact Dr Zhaoyu Li for further information.

Project 1: Tracing memory formation using whole-brain calcium imaging.

Project 2: Experiences reshape motor outputs by modulating neural network states.

Project 3: Circuit and molecular mechanisms of nociceptive responses.

Project 4: Mechanisms of protein aggregates induced neural network dysfunction.

How to appply

Research Areas

  • Neural circuit
  • Sensorimotor integration
  • Nociception
  • Neural network dysfunction

Our team

Group Leader

Research Members

  • Dr Yidong Li

    Postdoctoral Research Fellow
    Queensland Brain Institute