Axonal degeneration

How neurons can maintain their axonal structure and function over time is not well understood. Axonal degeneration is a critical and common feature of many peripheral neuropathies, neurodegenerative diseases and nerve injuries. The genetic factors and the cellular mechanisms that prevent axonal degeneration under normal conditions and that trigger it under pathological ones are still largely unknown. We aim to use C. elegans genetics to identify the molecules and the mechanisms that control these processes.

Axonal regeneration

How some axons can regenerate after nerve damage while others cannot is a crucial question in neurobiology, and the answers will be of great value for the medical handling of neurodegenerative diseases and of traumatic nerve injuries. Largely unknown are the molecules and the mechanisms underlying this important biological process. In C. elegans, a new laser-based technology allows single neuron axotomy in living animals, and axonal regeneration can now be visualised in real-time and tackled with a genetic approach. Our goal is to identify the genes and conditions that control this fascinating process.

Neuronal polarity and axonal guidance

Neurons are highly polarized cells with distinct domains such as axons and dendrites. The polarity of a developing neuron determines the precise exit point of its axon as well as the initial trajectory of axon outgrowth. Understanding how neurons establish and orient polarity with respect to extracellular cues is an important and challenging problem in neurobiology. We wish to understand how different secreted cues regulate the orientation of neuronal polarity and axonal/dendrite guidance in vivo.