Functional and molecular neuroimaging

About

The Chuang laboratory is developing functional and molecular imaging to understand the neural endophenotypes of diseases. Identifying disease-specific patterns of brain activity and connectivity as biomarkers could improve the characterisation of diseases and their progress; the Chuang group aims to facilitate early and specific diagnosis, optimise treatment and develop drug therapeutics. 

A major focus of the laboratory is to map and understand the functional connectome in vivo. The brain connectome describes how neurons are wired and interact. It is a critical component for linking behaviour with cellular and molecular changes. Many neurodegenerative and psychiatric disorders show deficits in brain networks, suggesting that disease connectomes may underlie disease progression. To determine brain connectivity associated with behaviour, the Chuang group developed manganese-enhanced magnetic resonance imaging (MRI) for in vivo staining of the hippocampus, a key region for memory, and detected plasticity in the mossy fibres after a memory task in the rodent brain (Neuroimage 2015).

To image large-scale memory-related networks, the group established resting-state functional magnetic resonance imaging (fMRI), a technique measuring brain synchrony, to infer functional connectivity in the rodent brain. They identified ongoing synchronous activity following a memory task and found that connectivity patterns reorganised toward the cortex over time, in line with current understanding of memory consolidation. The connectivity and behaviour performance can be enhanced by Aricept®, a drug for treating dementia. The relationship between the functional connectome and memory performance indicates the potential of fMRI for tracking cognitive function in diseases and to test drug effects. Now, the group is applying structural and functional connectivity imaging in mouse models of neurodegeneration to track disease progress and assess responses to experimental treatments.

Contact

  +61 7 336 33811

  k.chuang@uq.edu.au


Group Publications

Research Areas

  • Functional and molecular imaging
  • Neural endophenotypes
  • Functional connectome in vivo
  • Neurodegeneration


Apply for a PhD

Group Leader

 


Research Members

Nasrallah FA, Singh KK, Yeow LY, Chuang KH. GABAergic effect on resting-state  functional connectivity: Dynamics under pharmacological antagonism. Neuroimage. 2017 Jan 21;149:53-62. doi: 10.1016/j.neuroimage.2017.01.040. [Epub ahead of print] PubMed PMID: 28119136.

Jackson AW, Chandrasekharan P, Ramasamy B, Goggi J, Chuang KH, He T, Robins EG. Octreotide Functionalized Nano-Contrast Agent for Targeted Magnetic Resonance Imaging. Biomacromolecules. 2016 Dec 12;17(12):3902-3910. PubMed PMID: 27936729.

Parikh I, Guo J, Chuang KH, Zhong Y, Rempe RG, Hoffman JD, Armstrong R, Bauer  B, Hartz AM, Lin AL. Caloric restriction preserves memory and reduces anxiety of  aging mice with early enhancement of neurovascular functions. Aging (Albany NY).  2016 Nov 8;8(11):2814-2826. doi: 10.18632/aging.101094. PubMed PMID: 27829242; PubMed Central PMCID: PMC5191872.

Ulyanova A, To XV, Asad AB, Han W, Chuang KH. MEMRI detects neuronal activity  and connectivity in hypothalamic neural circuit responding to leptin. Neuroimage. 2016 Oct 8. pii: S1053-8119(16)30559-6. doi: 10.1016/j.neuroimage.2016.10.012. [Epub ahead of print] PubMed PMID: 27729278.

Garcia-Miralles M, Hong X, Tan LJ, Caron NS, Huang Y, To XV, Lin RY, Franciosi S, Papapetropoulos S, Hayardeny L, Hayden MR, Chuang KH, Pouladi MA. Laquinimod rescues striatal, cortical and white matter pathology and results in modest behavioural improvements in the YAC128 model of Huntington disease. Sci Rep. 2016 Aug 16;6:31652. doi: 10.1038/srep31652. PubMed PMID: 27528441; PubMed Central PMCID: PMC4985819.

Liu XL, Ng CT, Chandrasekharan P, Yang HT, Zhao LY, Peng E, Lv YB, Xiao W, Fang J, Yi JB, Zhang H, Chuang KH, Bay BH, Ding J, Fan HM. Synthesis of Ferromagnetic Fe0.6 Mn0.4 O Nanoflowers as a New Class of Magnetic Theranostic Platform for In Vivo T1 -T2 Dual-Mode Magnetic Resonance Imaging and Magnetic Hyperthermia Therapy. Adv Healthc Mater. 2016 Aug;5(16):2092-104. doi: 10.1002/adhm.201600357. PubMed PMID: 27297640.

Teo RT, Hong X, Yu-Taeger L, Huang Y, Tan LJ, Xie Y, To XV, Guo L, Rajendran R, Novati A, Calaminus C, Riess O, Hayden MR, Nguyen HP, Chuang KH, Pouladi MA. Structural and molecular myelination deficits occur prior to neuronal loss in the YAC128 and BACHD models of Huntington disease. Hum Mol Genet. 2016 Jul 1;25(13):2621-2632. PubMed PMID: 27126634; PubMed Central PMCID: PMC5181633.

Nasrallah FA, To XV, Chen DY, Routtenberg A, Chuang KH. Resting state functional connectivity data supports detection of cognition in the rodent brain. Data Brief. 2016 Mar 15;7:1156-64. doi: 10.1016/j.dib.2016.03.041. PubMed PMID: 27115031; PubMed Central PMCID: PMC4833131.

Attia AB, Ho CJ, Chandrasekharan P, Balasundaram G, Tay HC, Burton NC, Chuang KH, Ntziachristos V, Olivo M. Multispectral optoacoustic and MRI coregistration for molecular imaging of orthotopic model of human glioblastoma. J Biophotonics.  2016 Jul;9(7):701-8. doi: 10.1002/jbio.201500321. PubMed PMID: 27091626.

Bhanu Prakash KN, Srour H, Velan SS, Chuang KH. A method for the automatic segmentation of brown adipose tissue. MAGMA. 2016 Apr;29(2):287-99. doi: 10.1007/s10334-015-0517-0. PubMed PMID: 26755063.

Lu Z, Phua KS, Huang W, Hong X, Nasrallah FA, Chuang KH, Guan C. Combining EPI and motion correction for fMRI human brain images with big motion. Conf Proc  IEEE Eng Med Biol Soc. 2015;2015:5449-52. doi: 10.1109/EMBC.2015.7319624. PubMed  PMID: 26737524.

Li Y, Zhou QL, Sun W, Chandrasekharan P, Cheng HS, Ying Z, Lakshmanan M, Raju A, Tenen DG, Cheng SY, Chuang KH, Li J, Prabhakar S, Li M, Tergaonkar V. Non-canonical NF-κB signalling and ETS1/2 cooperatively drive C250T mutant TERT promoter activation. Nat Cell Biol. 2015 Oct;17(10):1327-38. doi: 10.1038/ncb3240. PubMed PMID: 26389665; PubMed Central PMCID: PMC4772727.

Nasrallah FA, To XV, Chen DY, Routtenberg A, Chuang KH. Functional connectivity MRI tracks memory networks after maze learning in rodents. Neuroimage. 2016 Feb 15;127:196-202. doi: 10.1016/j.neuroimage.2015.08.013. PubMed PMID: 26299794.

Zhang B, Chuang KH, Tjio C, Chen WC, Sheu FS, Routtenberg A. Spatial memory training induces morphological changes detected by manganese-enhanced MRI in the  hippocampal CA3 mossy fiber terminal zone. Neuroimage. 2016 Mar;128:227-37. doi:  10.1016/j.neuroimage.2015.07.084. PubMed PMID: 26254115.

Hennedige T, Koh TS, Hartono S, Yan YY, Song IC, Zheng L, Lee WS, Rumpel H, Martarello L, Khoo JB, Koh DM, Chuang KH, Thng CH. Intravoxel incoherent imaging  of renal fibrosis induced in a murine model of unilateral ureteral obstruction. Magn Reson Imaging. 2015 Dec;33(10):1324-8. doi: 10.1016/j.mri.2015.07.012. PubMed PMID: 26248270.

Hong X, To XV, Teh I, Soh JR, Chuang KH. Evaluation of EPI distortion correction methods for quantitative MRI of the brain at high magnetic field. Magn Reson Imaging. 2015 Nov;33(9):1098-105. doi: 10.1016/j.mri.2015.06.010. PubMed PMID: 26117700.

Rajendran R, Liang J, Tang MY, Henry B, Chuang KH. Optimization of arterial spin labeling MRI for quantitative tumor perfusion in a mouse xenograft model. NMR Biomed. 2015 Aug;28(8):988-97. doi: 10.1002/nbm.3330. PubMed PMID: 26104980.

Nasrallah FA, Yeow LY, Biswal B, Chuang KH. Dependence of BOLD signal fluctuation on arterial blood CO2 and OImplication for resting-state functional connectivity. Neuroimage. 2015 Aug 15;117:29-39. doi: 10.1016/j.neuroimage.2015.05.035. PubMed PMID: 26003858.

Chandrasekharan P, Yang CT, Nasrallah FA, Tay HC, Chuang KH, Robins EG. Pharmacokinetics of Gd(DO3A-Lys) and MR imaging studies in an orthotopic U87MG glioma tumor model. Contrast Media Mol Imaging. 2015 May-Jun;10(3):237-44. doi: 10.1002/cmmi.1634. PubMed PMID: 25612157.

Nasrallah FA, Low SM, Lew SK, Chen K, Chuang KH. Pharmacological insight into neurotransmission origins of resting-state functional connectivity: α2-adrenergic agonist vs antagonist. Neuroimage. 2014 Dec;103:364-73. doi: 10.1016/j.neuroimage.2014.09.004. PubMed PMID: 25241086.

Kokuryo D, Nakashima S, Ozaki F, Yuba E, Chuang KH, Aoshima S, Ishizaka Y, Saga T, Kono K, Aoki I. Evaluation of thermo-triggered drug release in intramuscular-transplanted tumors using thermosensitive polymer-modified liposomes and MRI. Nanomedicine. 2015 Jan;11(1):229-38. doi: 10.1016/j.nano.2014.09.001. PubMed PMID: 25229542.

Rajendran R, Huang W, Tang AM, Liang JM, Choo S, Reese T, Hentze H, van Boxtel S, Cliffe A, Rogers K, Henry B, Chuang KH. Early detection of antiangiogenic treatment responses in a mouse xenograft tumor model using quantitative perfusion MRI. Cancer Med. 2014 Feb;3(1):47-60. doi: 10.1002/cam4.177. PubMed PMID: 24403176; PubMed Central PMCID: PMC3930389.

Nasrallah FA, Tay HC, Chuang KH. Detection of functional connectivity in the  resting mouse brain. Neuroimage. 2014 Feb 1;86:417-24. doi: 10.1016/j.neuroimage.2013.10.025. PubMed PMID: 24157920.

Yang CT, Chandrasekharan P, He T, Poh Z, Raju A, Chuang KH, Robins EG. An intravascular MRI contrast agent based on Gd(DO3A-Lys) for tumor angiography. Biomaterials. 2014 Jan;35(1):327-36. doi: 10.1016/j.biomaterials.2013.10.006. PubMed PMID: 24138829.

Nasrallah FA, Lew SK, Low AS, Chuang KH. Neural correlate of resting-state functional connectivity under α2 adrenergic receptor agonist, medetomidine. Neuroimage. 2014 Jan 1;84:27-34. doi: 10.1016/j.neuroimage.2013.08.004. PubMed PMID: 23948809.

Nasrallah FA, Pagès G, Kuchel PW, Golay X, Chuang KH. Imaging brain deoxyglucose uptake and metabolism by glucoCEST MRI. J Cereb Blood Flow Metab. 2013 Aug;33(8):1270-8. doi: 10.1038/jcbfm.2013.79. PubMed PMID: 23673434; PubMed  Central PMCID: PMC3734779.

Rajendran R, Lew SK, Yong CX, Tan J, Wang DJ, Chuang KH. Quantitative mouse renal perfusion using arterial spin labeling. NMR Biomed. 2013 Oct;26(10):1225-32. doi: 10.1002/nbm.2939. PubMed PMID: 23592238.

Cheng W, Ping Y, Zhang Y, Chuang KH, Liu Y. Magnetic resonance imaging (MRI)  contrast agents for tumor diagnosis. J Healthc Eng. 2013;4(1):23-45. doi: 10.1260/2040-2295.4.1.23. Review. PubMed PMID: 23502248.

Zhong J, Rifkin-Graboi A, Ta AT, Yap KL, Chuang KH, Meaney MJ, Qiu A. Functional networks in parallel with cortical development associate with executive functions in children. Cereb Cortex. 2014 Jul;24(7):1937-47. doi: 10.1093/cercor/bht051. PubMed PMID: 23448875.

Yuan F, Chuang KH, Liu J. A variational surface deformation and subdivision-based modeling framework for noisy and small n-furcated tube-like structures. IEEE Trans Biomed Eng. 2013 Jun;60(6):1589-98. doi: 10.1109/TBME.2013.2238936. PubMed PMID: 23322754.

Sundaram JR, Poore CP, Sulaimee NH, Pareek T, Asad AB, Rajkumar R, Cheong WF, Wenk MR, Dawe GS, Chuang KH, Pant HC, Kesavapany S. Specific inhibition of p25/Cdk5 activity by the Cdk5 inhibitory peptide reduces neurodegeneration in vivo. J Neurosci. 2013 Jan 2;33(1):334-43. doi: 10.1523/JNEUROSCI.3593-12.2013. PubMed PMID: 23283346.

Chandrasekharan P, Yong CX, Poh Z, He T, He Z, Liu S, Robins EG, Chuang KH, Yang CT. Gadolinium chelate with DO3A conjugated 2-(diphenylphosphoryl)-ethyldiphenylphosphonium cation as potential tumor-selective MRI contrast agent. Biomaterials. 2012 Dec;33(36):9225-31. doi: 10.1016/j.biomaterials.2012.08.071. PubMed PMID: 23026708.

Peng E, Choo ES, Chandrasekharan P, Yang CT, Ding J, Chuang KH, Xue JM. Synthesis of manganese ferrite/graphene oxide nanocomposites for biomedical applications. Small. 2012 Dec 7;8(23):3620-30. doi: 10.1002/smll.201201427. PubMed PMID: 22962025.

Bai J, Trinh TL, Chuang KH, Qiu A. Atlas-based automatic mouse brain image segmentation revisited: model complexity vs. image registration. Magn Reson Imaging. 2012 Jul;30(6):789-98. doi: 10.1016/j.mri.2012.02.010. PubMed PMID: 22464452.

Nasrallah FA, Lee EL, Chuang KH. Optimization of flow-sensitive alternating inversion recovery (FAIR) for perfusion functional MRI of rodent brain. NMR Biomed. 2012 Nov;25(11):1209-16. doi: 10.1002/nbm.2790. PubMed PMID: 22451418.

Leuze C, Kimura Y, Kershaw J, Shibata S, Saga T, Chuang KH, Shimoyama I, Aoki I. Quantitative measurement of changes in calcium channel activity in vivo utilizing dynamic manganese-enhanced MRI (dMEMRI). Neuroimage. 2012 Mar;60(1):392-9. doi: 10.1016/j.neuroimage.2011.12.030. PubMed PMID: 22227885.

Nasrallah FA, Tan J, Chuang KH. Pharmacological modulation of functional connectivity: α2-adrenergic receptor agonist alters synchrony but not neural activation. Neuroimage. 2012 Mar;60(1):436-46. doi: 10.1016/j.neuroimage.2011.12.026. PubMed PMID: 22209807.

Chandrasekharan P, Maity D, Yong CX, Chuang KH, Ding J, Feng SS. Vitamin E (D-alpha-tocopheryl-co-poly(ethylene glycol) 1000 succinate) micelles-superparamagnetic iron oxide nanoparticles for enhanced thermotherapy and MRI. Biomaterials. 2011 Aug;32(24):5663-72. doi: 10.1016/j.biomaterials.2011.04.037. PubMed PMID: 21550654.

Kittigowittana K, Yang CT, Cheah WC, Chuang KH, Tuang CY, Chang YT, Golay X,  Bates RW. Development of intravascular contrast agents for MRI using gadolinium chelates. ChemMedChem. 2011 May 2;6(5):781-7. doi: 10.1002/cmdc.201100066. PubMed PMID: 21433294.

Chou N, Wu J, Bai Bingren J, Qiu A, Chuang KH. Robust automatic rodent brain  extraction using 3-D pulse-coupled neural networks (PCNN). IEEE Trans Image Process. 2011 Sep;20(9):2554-64. doi: 10.1109/TIP.2011.2126587. PubMed PMID: 21411404.

Tan YF, Chandrasekharan P, Maity D, Yong CX, Chuang KH, Zhao Y, Wang S, Ding  J, Feng SS. Multimodal tumor imaging by iron oxides and quantum dots formulated in poly (lactic acid)-D-alpha-tocopheryl polyethylene glycol 1000 succinate nanoparticles. Biomaterials. 2011 Apr;32(11):2969-78. doi: 10.1016/j.biomaterials.2010.12.055. PubMed PMID: 21257200.

Saito S, Aoki I, Sawada K, Sun XZ, Chuang KH, Kershaw J, Kanno I, Suhara T. Quantitative and noninvasive assessment of prenatal X-ray-induced CNS abnormalities using magnetic resonance imaging. Radiat Res. 2011 Jan;175(1):1-9.  doi: 10.1667/RR2134.1. PubMed PMID: 21175341.

Maity D, Chandrasekharan P, Yang CT, Chuang KH, Shuter B, Xue JM, Ding J, Feng SS. Facile synthesis of water-stable magnetite nanoparticles for clinical MRI and magnetic hyperthermia applications. Nanomedicine (Lond). 2010 Dec;5(10):1571-84. doi: 10.2217/nnm.10.77. PubMed PMID: 21143034.

Weng JC, Chuang KH, Goloshevsky A, Dodd SJ, Sharer K. Mapping plasticity in the forepaw digit barrel subfield of rat brains using functional MRI. Neuroimage. 2011 Jan 15;54(2):1122-9. doi: 10.1016/j.neuroimage.2010.08.046. PubMed PMID: 20804851; PubMed Central PMCID: PMC3517913.

Hu TC, Chuang KH, Yanasak N, Koretsky A. Relationship between blood and myocardium manganese levels during manganese-enhanced MRI (MEMRI) with T1 mapping in rats. NMR Biomed. 2011 Jan;24(1):46-53. doi: 10.1002/nbm.1554. PubMed PMID: 20665900; PubMed Central PMCID: PMC4213145.

Han W, Chuang KH, Chang YT, Olivo M, Velan SS, Bhakoo K, Townsend D, Radda GK. Imaging metabolic syndrome. EMBO Mol Med. 2010 Jun;2(6):196-210. doi: 10.1002/emmm.201000074. Review. PubMed PMID: 20533426; PubMed Central PMCID: PMC3377322.

Prashant C, Dipak M, Yang CT, Chuang KH, Jun D, Feng SS. Superparamagnetic iron oxide--loaded poly(lactic acid)-D-alpha-tocopherol polyethylene glycol 1000  succinate copolymer nanoparticles as MRI contrast agent. Biomaterials. 2010 Jul;31(21):5588-97. doi: 10.1016/j.biomaterials.2010.03.070. PubMed PMID: 20434210.

Chuang KH, Belluscio L, Koretsky AP. In vivo detection of individual glomeruli in the rodent olfactory bulb using manganese enhanced MRI. Neuroimage.  2010 Jan 15;49(2):1350-6. doi: 10.1016/j.neuroimage.2009.09.060. PubMed PMID: 19800011; PubMed Central PMCID: PMC2789874.

Pelled G, Bergstrom DA, Tierney PL, Conroy RS, Chuang KH, Yu D, Leopold DA, Walters JR, Koretsky AP. Ipsilateral cortical fMRI responses after peripheral nerve damage in rats reflect increased interneuron activity. Proc Natl Acad Sci U S A. 2009 Aug 18;106(33):14114-9. doi: 10.1073/pnas.0903153106. PubMed PMID: 19666522; PubMed Central PMCID: PMC2720851.

Chuang KH, Koretsky AP, Sotak CH. Temporal changes in the T1 and T2 relaxation rates (DeltaR1 and DeltaR2) in the rat brain are consistent with the tissue-clearance rates of elemental manganese. Magn Reson Med. 2009 Jun;61(6):1528-32. doi: 10.1002/mrm.21962. PubMed PMID: 19353652; PubMed Central  PMCID: PMC2756245.

Chuang KH, Koretsky AP. Accounting for nonspecific enhancement in neuronal tract tracing using manganese enhanced magnetic resonance imaging. Magn Reson Imaging. 2009 Jun;27(5):594-600. doi: 10.1016/j.mri.2008.10.006. PubMed PMID: 19144489; PubMed Central PMCID: PMC2766048.

Yang P, Wang PN, Chuang KH, Jong YJ, Chao TC, Wu MT. Absence of gender effect on children with attention-deficit/hyperactivity disorder as assessed by optimized voxel-based morphometry. Psychiatry Res. 2008 Dec 30;164(3):245-53. doi: 10.1016/j.pscychresns.2007.12.013. PubMed PMID: 19013775.

Chuang KH, Lee JH, Silva AC, Belluscio L, Koretsky AP. Manganese enhanced MRI reveals functional circuitry in response to odorant stimuli. Neuroimage. 2009 Jan 15;44(2):363-72. doi: 10.1016/j.neuroimage.2008.08.046. PubMed PMID: 18848997; PubMed Central PMCID: PMC2634839.

Waghorn B, Edwards T, Yang Y, Chuang KH, Yanasak N, Hu TC. Monitoring dynamic alterations in calcium homeostasis by T (1)-weighted and T (1)-mapping cardiac manganese-enhanced MRI in a murine myocardial infarction model. NMR Biomed. 2008  Nov;21(10):1102-11. doi: 10.1002/nbm.1287. PubMed PMID: 18780285.

Tucciarone J, Chuang KH, Dodd SJ, Silva A, Pelled G, Koretsky AP. Layer specific tracing of corticocortical and thalamocortical connectivity in the rodent using manganese enhanced MRI. Neuroimage. 2009 Feb 1;44(3):923-31. doi: 10.1016/j.neuroimage.2008.07.036. PubMed PMID: 18755280.

Wu CW, Chuang KH, Wai YY, Wan YL, Chen JH, Liu HL. Vascular space occupancy-dependent functional MRI by tissue suppression. J Magn Reson Imaging. 2008 Jul;28(1):219-26. doi: 10.1002/jmri.21410. PubMed PMID: 18581345.

Chuang KH, van Gelderen P, Merkle H, Bodurka J, Ikonomidou VN, Koretsky AP, Duyn JH, Talagala SL. Mapping resting-state functional connectivity using perfusion MRI. Neuroimage. 2008 May 1;40(4):1595-605. doi: 10.1016/j.neuroimage.2008.01.006. PubMed PMID: 18314354; PubMed Central PMCID: PMC2435272.

Hyodo F, Chuang KH, Goloshevsky AG, Sulima A, Griffiths GL, Mitchell JB, Koretsky AP, Krishna MC. Brain redox imaging using blood-brain barrier-permeable  nitroxide MRI contrast agent. J Cereb Blood Flow Metab. 2008 Jun;28(6):1165-74. doi: 10.1038/jcbfm.2008.5. PubMed PMID: 18270519; PubMed Central PMCID: PMC3197772.

Pelled G, Chuang KH, Dodd SJ, Koretsky AP. Functional MRI detection of bilateral cortical reorganization in the rodent brain following peripheral nerve  deafferentation. Neuroimage. 2007 Aug 1;37(1):262-73. PubMed PMID: 17544301; PubMed Central PMCID: PMC2253720.

Liu CL, Hue CW, Chen CC, Chuang KH, Liang KC, Wang YH, Wu CW, Chen JH. Dissociated roles of the middle frontal gyri in the processing of Chinese characters. Neuroreport. 2006 Sep 18;17(13):1397-401. PubMed PMID: 16932146.

Chuang KH, Koretsky A. Improved neuronal tract tracing using manganese enhanced magnetic resonance imaging with fast T(1) mapping. Magn Reson Med. 2006  Mar;55(3):604-11. PubMed PMID: 16470592.

Aoki I, Takahashi Y, Chuang KH, Silva AC, Igarashi T, Tanaka C, Childs RW, Koretsky AP. Cell labeling for magnetic resonance imaging with the T1 agent manganese chloride. NMR Biomed. 2006 Feb;19(1):50-9. PubMed PMID: 16411253.

Chuang KH, Wu MT, Lin YR, Hsieh KS, Wu ML, Tsai SY, Ko CW, Chung HW. Application of model-free analysis in the MR assessment of pulmonary perfusion dynamics. Magn Reson Med. 2005 Aug;54(2):299-308. PubMed PMID: 16032669.

MT, Sheen JM, Chuang KH, Yang P, Chin SL, Tsai CY, Chen CJ, Liao JR, Lai PH, Chu KA, Pan HB, Yang CF. Neuronal specificity of acupuncture response: a fMRI study with electroacupuncture. Neuroimage. 2002 Aug;16(4):1028-37. PubMed PMID: 12202090. 

 


Understanding functional and metabolic brain connectivity in mice
(2017–2018) Universities Australia - Germany Joint Research Co-operation Scheme

 

  • Associate Professor Darryl Eyles, QBI, The University of Queensland
  • Professor Jürgen Götz, QBI, The University of Queensland
  • Professor Tianzi Jiang, QBI, The University of Queensland
  • Dr Fatima Nasrallah, QBI, The University of Queensland
  • Professor Linda J. Richards, QBI, The University of Queensland
  • Professor Pankaj Sah, QBI, The University of Queensland

 

Magnetic resonance imaging (MRI) is a powerful tool that can map structure, function and connectivity of the brain noninvasively for understanding brain function and its deficit in disorders. As the same technique can be applied in both humans and animals, it allows direct translation of findings in animal models to humans, or vice versa. The laboratory aims to identify neuro-endophenotype of brain functions and disorders using advanced MRI techniques to improve our understanding of cognitive functions and to facilitate early diagnosis of diseases and evaluation of treatment.

Project 1: Understand neural basis of resting-state network

An interesting phenomenon of the brain is that certain brain areas form networks of synchronous oscillation at the resting (task-free) state. These resting-state networks can be detected by functional MRI (fMRI) noninvasively and their changes have been associated with attention, learning, memory, dementia and other disorders. While widely applied, the neural basis and function of resting-state networks are largely unknown. We aim to understand the neural basis underlies the resting-state networks, the axonal connectivity that supports the network topology and their relevance to behaviour, particularly learning and memory. We are setting up a fibre photometry system for simultaneous recording of neuronal calcium activity and fMRI to determine the neurophysiological origin of the large-scale oscillation and its plasticity after learning. Optogenetics will be used to manipulate the network activity to determine the function of the network oscillation in behaviour.

Project 2:  Understand interplay between blood flow, amyloid plaque and brain connectivity

Neurodegenerative diseases, such as dementia, are irreversible and generally incurable and hence early detection is essential so that interventions can be applied to slow down its progression. Impaired brain connectivity that colocalized with amyloid plaque, a major hallmark of Alzheimer’s dementia, has been found but its relationship with amyloid pathology is unknown. Furthermore, deficient cerebrovascular function has also been found in dementia, which may affect the brain network function due to reduced supply of nutrients; however, whether it involves in the pathogenesis is not clear. We aim to further understand the relationship among these factors using human brain imaging data and test hypothesis in animal models. This translational study would provide new ways for assessing brain function and indicate new directions for treatment development.

Project 3:  Neuroinflammation, brain connectivity and neurodegeneration

Disease dependent derangement of brain connectivity has been found in various neurodegenerative and psychiatric disorders, indicating that impairment of structural and functional connectivity could be involved in the pathogenesis of the disease and the potential of using connectivity as a disease biomarker.  Furthermore, neuroinflammation has also been identified in various neurodegenerative and even psychiatric disorders. However, whether inflammation is involved in the pathogenesis and its relationship with impaired connectivity are not clear. We aim to further understand the role of neuroinflammation in the disease progression by combining imaging (PET scan of neuroinflammation and multimodal MRI) of human patients and animal models of Huntington disease to test hypothesis and validate in animal models. This translational study would provide new knowledge of the role of neuroinflammation in the pathogenesis and progression of disorders, new biomarkers for assessing pathology and new directions for treatment development.

How to apply