

Clem Jones Centre for Ageing Dementia Research Symposium

Advances in imaging, disease mechanisms, and therapies for ageing dementia research

8-10 February 2023 Queensland Brain Institute, Brisbane qbi.edu.au/cjcadr-2023-scientific-symposium

Names (Presenter	Kornraviya Sankorrakul 12, Theodora A Constantin 13, Jacinta J Conroy 1, Lei
underlined)	Qian ¹ , Leda Kasas ¹ Sonja Meier ¹ , Thomas Cleland ¹ , Frank Longo ⁴ ,
	Elizabeth J Coulson 1
Affiliations	1. School of Biomedical Sciences and Queensland Brain Institute,
	The University of Queensland, Brisbane, QLD, Australia
	2. Research Center for Neuroscience, Institute of Molecular
	Biosciences, Mahidol University, Salaya, Nakhonpathom,
	Thailand
	3. Pharmacology, Oxford University, Oxford, UK
	4. Stanford University, USA
Abstract (appr 300 w)	Although epidemiological studies indicate that sleep-disordered
	breathing (SDB) such as obstructive sleep apnea is a strong risk
	factor for the development of Alzheimer's disease (AD), the
	mechanisms of the risk remain unclear. We developed a method of
	modeling SDB in mice that replicates key features of the human
	condition: altered breathing during sleep, sleep disruption,
	moderate hypoxemia, and cognitive impairment due to the
	selective degeneration of cholinergic basal forebrain neurons,
	which are characteristically lost in AD (Qian et al Nature
	Communications, 2022). These neurons are also known to express
	the p75 neurotrophin receptor, a regulator of neuronal death that
	can undergo regulated intramembrane cleavage in response to low
	oxygen to regulate hypoxia-inducible factor-1α (HIF-1α). Previously,
	the fate of neurons in which such signalling has been induced was
	unknown. Here, using neuronal cell culture, we found that hypoxia
	promoted cleavage of p75 ^{NTR} , HIF-1 α activity, and apoptosis. In
	contrast, inhibiting p75 ^{NTR} cleavage, its activation, or signalling with
	candidate drugs, or preventing HIF-1 α nuclear translocation
	decreased neuronal cell death in vitro. Moreover these same
	treatments prevented hypoxia-induced cell death of basal forebrain
	cholinergic neurons in the SDB mouse model. These results
	demonstrate that hypoxia-induced apoptosis requiring HIF-1a
	nuclear translocation depends on p75 ^{NTR} expression and cleavage,
	and can be prevented with systemic application of anti-p75 ^{NTR} drug
	candidates.
	canulates.

Please aim to send by Jan 13 to rebecca.bibby@ug.edu.au