We are studying different populations of neurons in the cortex. In this image, subplate neurons (green) extend their processes towards the pial surface during early cortical development. These neurons project through the emerging cortical plate (in red), arborising in the marginal zone (in blue).
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Discovery</td>
<td>4</td>
</tr>
<tr>
<td>Research</td>
<td>16</td>
</tr>
<tr>
<td>Students</td>
<td>54</td>
</tr>
<tr>
<td>Community</td>
<td>60</td>
</tr>
<tr>
<td>Recognition</td>
<td>68</td>
</tr>
</tbody>
</table>

Table of Contents
UQ Vice-Chancellor and President’s Report

I am delighted to share with you a selection of the many successes achieved at the Queensland Brain Institute (QBI) in 2014.

Under the strong leadership of founding Director, Professor Perry Bartlett, QBI has progressively augmented an exemplary record built on collaborations, beginning with robust research partnerships at UQ, and extending to global research consortia, philanthropists and companies.

The continued growth of the Clem Jones Centre for Ageing and Dementia Research (CJCADR), led by Professor Jürgen Götz, is testament to the power of collaboration. In 2014, CJCADR joined with the Chinese Academy of Sciences’ Institute of Biophysics to create an Australia-China centre focussed on dementia research.

Further enhancing this work, the Stafford Fox Medical Research Foundation gifted $2.5 million for an international fellowship to study stroke-induced dementia—the cause of around 40 per cent of dementias. Also thanks to philanthropic support, German postdoctoral researcher and recipient of the prestigious Peter Hilton Research Fellowship in Ageing Dementia Dr Liviu-Gabriel Bodea joined CJCADR. Dr Bodea’s expertise in neuroimmunology adds significant traction to QBI’s dementia program.

QBI has continued its strong commitment to young scientists, and in 2014 two early career researchers, Dr Ramesh Narayanan and Dr Roger Marek, received The University of Queensland’s Dean’s Award for Research Higher Degree Excellence, for theses submitted in 2013. Dr Narayanan’s winning work advanced knowledge of the mechanisms behind motor neuron disease; Dr Marek’s thesis focussed on the neuronal circuit that is involved in the acquisition and extinction of fear memory.

Both researchers reflect the extreme dedication to research outcomes exhibited across QBI’s faculty.

QBI also hosted 24 Chinese students from Fudan University and Wenzhou Medical College as part of a six-week engagement at UQ to tighten ties between the institutions. Their positive experiences will produce benefits well into the future for people of both countries and for the global community.

Meanwhile, QBI continued to invest in coming generations of Australian knowledge leaders, and welcomed teenagers from more than 60 high schools for the 2014 Queensland Final of the Australian Brain Bee Challenge. Queensland has produced two of the last three champions of the International Brain Bee—and the Australian component owes its existence to QBI’s Professor Linda Richards, who founded the competition here in 2006.

Before finishing, I wish to congratulate Professor Perry Bartlett for being awarded the prestigious Distinguished Achievement Award by the Australian Neuroscience Society. Perry is a lion of neuroscience, who during a 40-year career has been responsible for a series of ground-breaking discoveries that will have perpetual positive impact. His global reputation and unflagging commitment to excellence and outcomes have helped attract outstanding staff, students and partners to the QBI. You will see overviews of some of their work in the pages that follow. I congratulate and thank each and every one.

The best news, perhaps, is that the best is yet to come!

Professor Peter Høj
Vice-Chancellor and President
The University of Queensland
In our eleventh year, I reflect with satisfaction on the growth of QBI's publications in high impact scientific journals, from the very first paper published in 2003. In addition, we have received commitment and grants totalling more than $26 million, which were previously unidentified, that form the genetic underpinnings of schizophrenia, which is internationally renowned for his work in understanding how the brain plans movement. They found more than one part of the brain is involved in emotional processing, including the role of Parkinson's. Professor Sah should also be commended for his contributions to Parkinson's research, which is deepening our understanding of how the brain plans movement and can lead to more targeted treatments for people with Parkinson's.

Following this, I was delighted to announce the presentation of the Royal Institute of Navigation's highest honour, the Gold Medal, to HRH Prince Philip, The Duke of Edinburgh for his many contributions. Our scientists received many awards during 2014. In our eleventh year, I wish to thank my many colleagues and friends for their continued support of QBI. This support is paramount to the success of QBI as a hub for neuroscience discovery and translation, and I look forward to your continued support.
The Queensland Brain Institute has rapidly positioned itself as one of the world’s leading neuroscience research facilities. QBI fosters an environment of discovery that will ultimately lead to the development of much-needed therapeutic treatments to combat diseases in which brain function has failed or is compromised. Here, we celebrate some of QBI’s fundamental breakthroughs in 2014.
These are very exciting findings that will no doubt bring hope to the quarter of a million Australians who have schizophrenia and to their families and carers.
Genome analysis reveals schizophrenia's secrets

Effective treatments for schizophrenia are closer after dozens of new sites across the human genome strongly associated with genetic predisposition to schizophrenia were uncovered.

The study, published in Nature, involved Professor Bryan Mowry, who said it was the world’s largest molecular genetic study into a psychiatric disorder.

Professor Mowry said the study found 108 sites, 83 of which were previously unidentified, that formed the genetic underpinnings of schizophrenia.

“This provides the potential for understanding the causes of the illness and for discovering new treatments,” he said.

These locations were not randomly distributed across the genome but converged upon genes that were expressed in certain tissues, particularly the brain and in tissues with important immune functions.

“These are very exciting findings that will no doubt bring hope to the quarter of a million Australians who have schizophrenia and to their families and carers,” Professor Mowry said.

“This study constitutes a rapid advance in our understanding of the genetic architecture of schizophrenia, opening the door to expanding our understanding of its underlying biology.”

Schizophrenia is a highly inheritable, debilitating psychiatric disorder that affects about one in every 100 people worldwide, and is characterised by hallucinations, disturbed beliefs and a breakdown of thought processes.

It is ranked ninth in the global burden of illness and is estimated to cost Australian society $5 billion a year.

Despite the huge cost to individuals and to society, only in the past five years has substantial progress been made.

“Interestingly, by far the strongest genetic finding links schizophrenia to a region previously identified in autoimmune diseases, implying the possibility of an autoimmune pathology in the disease, and is one that warrants further investigation.”

Using DNA samples from 36,989 schizophrenia patients, researchers used a genome-wide association study to find genetic variations between the patients and 113,075 control samples.

“By screening the DNA of people with schizophrenia and those without it at millions of DNA markers across the human genome, we were able to determine which markers were statistically significantly associated with this disorder,” Professor Mowry said.

“The next steps will involve determining the functional basis of these genetic signals and how they interact together to cause illness, and then develop new therapeutic interventions.”

UQ partnered with more than 200 organisations in the Schizophrenia Working Group of the Psychiatric Genomics Consortium, including researchers from QBI, QCMHR and the Royal Brisbane and Women’s Hospital Department of Psychiatry.

QBI’s Professor Naomi Wray, Professor Peter Visscher, and Dr Sang Hong Lee also contributed to the analyses of the dataset.
We've found that a molecule called CAL-101 could selectively prevent excess neuroinflammation.
Halting the damaging effects of stroke

Professor Fred Meunier led an international team to discover a new avenue for the treatment of the debilitating effects of ischaemic stroke on patients. The team discovered that the molecule CAL-101 can be used to stop inflammation of the brain. Professor Meunier said that current stroke treatments—primarily aspirin or tissue plasminogen activator—clear clots caused by stroke, but often result in extra trauma as blood rushes back into highly delicate areas already damaged in the brain.

"Whenever you have a clot, you have inflammation, and when this happens in the brain it is very bad news," Professor Meunier said. "Therefore it's critical to stop inflammation following clotting in the brain, and we've found that a molecule called CAL-101 would selectively prevent excess neuroinflammation."

The team found that mice treated with CAL-101, a selective phosphoinositide-3 kinase delta (PI3Kδ) inhibitor, received up to three hours of protection against the excessive secretion of tumour necrosis factor (TNF) that causes inflammation. Results showed that there is a window of opportunity for treatment before further damage is caused, and this method would be an ideal first response treatment administered in conjunction with current treatments.

The findings of this highly promising therapeutic strategy coincide with current public health messages to identify the signs of stroke, and seek immediate medical treatment for a stroke victim. The estimated economic burden in Australia is $49.3 billion.

CAL-101 was named molecule of the year by the FDA in America for the treatment of Hodgkin lymphoma, leaving the researchers hopeful that use of the molecule as a stroke treatment could be fast-tracked.

Though stroke is known to be a major cause of disability, with one Australian suffering a stroke every 10 minutes, fewer people understand the longer-term consequences. Additionally, stroke is the cause for around 40 per cent of dementias, highlighting the impact that the condition can have 'down-stream' for longer-term consequences beyond the initial event.

QBI worked together with UQ's School of Biomedical Sciences and Institute for Molecular Bioscience, as well with researchers from the University Medical Center Hamburg-Eppendorf, Germany; University College London, UK; and Monash University.

The study was published in Nature Communications.
These results help us to understand how brain wiring occurs, which is fundamental for brain function.
A study discovered that early experience affects how the two sides of the brain are wired together after birth. The study led by Professor Linda Richards found that balanced sensory input from both sides of the body is required for correct wiring to occur. The connections that were highlighted in this study comprise a large fibre tract called the corpus callosum, which acts as a bridge between the two halves of the brain and plays a role in the development of social skills, language, touch, vision, hearing, and motor control.

These connections form during brain development and are shaped by both genes and experience. Work in the Richards Laboratory showed that the developing corpus callosum requires balanced sensory input from both sides of the body in order to form the right connections between the two brain hemispheres. “These results help us to understand how brain wiring occurs, and correct brain wiring is fundamental for brain function,” Professor Richards said.

Malformations of the corpus callosum have an incidence of at least one in 3,000 people and result in a wide range of symptoms such as poor coordination, delayed childhood development milestones such as walking, and even lower perception of pain. Corpus callosum malformations are also sometimes associated with psychiatric illnesses such as schizophrenia and autism.

The study was conducted in developing mice and found that when corpus callosum neurons were deprived of sensory or endogenous activity in one brain hemisphere they wired incorrectly. This process could be rescued by manipulating activity in both hemispheres in a symmetric manner, demonstrating that not just overall activation, but balanced levels of neuronal activity between brain hemispheres are critical for precise wiring.

Dr Rodrigo Suárez and PhD candidate Ms Laura Fenlon were co-lead authors on the study. “These results expand our understanding of how functional brain circuits form during development,” Dr Suárez said. “For example, not only sensory-evoked but also spontaneous activity is employed by these axons to accurately find their contralateral targets.” The research paper also showed that malformations of the corpus callosum can occur in subtle ways, as connections were disrupted only in their final stages of being established. Small alterations of circuit connectivity during postnatal stages may have an impact on the development of psychiatric illnesses. “The work advances our knowledge about how corpus callosum axons find their correct targets in the opposite hemisphere, which could have wide-reaching implications for numerous brain disorders involving altered brain connectivity,” Ms Fenlon said.

The researchers now want to learn how the balanced activity influences the corpus callosum neurons to change their growth, and they are also looking for genes that might be involved in this process. The study was published in the prestigious journal *Neuron*.
Improved understanding of how the brain plans movement could lead to more targeted treatments for people with Parkinson’s.
A surprise discovery about how the brain plans movement that may lead to more targeted treatments for patients with Parkinson’s disease.

A part of the brain that was thought to be only involved in controlling movement also plays a key role in planning movement.

The finding was made while recording the brain activity in patients with Parkinson’s disease, during surgery to implant electrodes for deep brain stimulation to treat problems with gait.

Professor Pankaj Sah from QBI collaborated with neurologist Professor Peter Silburn and neurosurgeon Associate Professor Terry Coyne from the UQ Centre for Clinical Research.

“This study aimed to improve understanding of how different parts of the brain are involved in planning movement and controlling gait,” Professor Sah said.

The team was particularly interested in a part of the brain stem known as the pedunculopontine nucleus (PPN), which lies in the brainstem, one of the deepest parts of the brain.

The PPN has previously been targeted as a treatment point for people with advanced Parkinson’s disease who have difficulty in initiating movement or have ‘freezing of gait’.

“To date, we have known that walking is generally controlled by the outer part of the brain known as the cortex,” Professor Sah said.

“When you decide to walk, the cortex sends signals to your brain stem which in turn signals the spinal cord to initiate movement.”

It had been known that neurons in the PPN are activated during limb movement; however, the study showed they were also activated when patients were simply thinking about walking.

“This is a complete surprise, because the general thinking has been that movement planning takes place in the cortex, but this study indicates it might be happening in the brain stem as well,” Professor Sah said.

Parkinson’s disease is the second most common neurodegenerative disorder after Alzheimer’s disease, affecting more than six million people globally, and about one in 350 Australians.

Professor Sah said improved understanding of how the brain plans movement could lead to more targeted treatments for people with Parkinson’s.

“All the patients treated with deep brain stimulation during the study also recorded positive outcomes with improvements in gait, highlighting the importance of neuroscientists working with clinicians.”

Findings of the research are published in the journal *Nature Neuroscience*.
Rather than being static, the way genes function is incredibly dynamic and can be altered by our daily life experiences, with emotionally relevant events having a pronounced impact.
Controlling fear may be possible by controlling DNA. Loosening the grip of fear-related memories, particularly those implicated in conditions such as phobia and post-traumatic stress disorder, may now be possible due to a new discovery.

QBI neuroscientists shed new light on the processes behind the mechanism, and may have found a way to silence the gene that feeds fear.

Senior research fellow Dr Timothy Bredy and his team have found a novel mechanism of gene regulation associated with fear extinction, an inhibitory learning process thought to be critical for controlling fear when the response was no longer required.

“Rather than being static, the way genes function is incredibly dynamic and can be altered by our daily life experiences, with emotionally relevant events having a pronounced impact,” Dr Bredy said.

By understanding the fundamental relationship between the way in which DNA functions without a change in the underlying sequence, future targets for therapeutic intervention in fear-related anxiety disorders could be developed.

“This may be achieved through the selective enhancement of memory for fear extinction by targeting genes that are subject to this novel mode of epigenetic regulation,” he said.

Mr Xiang Li, a PhD candidate and the study’s lead author, said fear extinction was a clear example of rapid behavioural adaptation, and that impairments in this process were critically involved in the development of fear-related anxiety disorders.

“What is most exciting is that we have revealed an epigenetic state that appears to be quite specific for fear extinction,” Mr Li said.

Dr Bredy said this was the first comprehensive analysis of how fear extinction was influenced by modifying DNA.

“It highlights the adaptive significance of experience-dependent changes in the chromatin landscape in the adult brain,” he said.

Collaborative research into the field is continuing by a team from QBI, the University of California, Irvine, and Harvard University.

The study was published in Proceedings of the National Academy of Sciences of the USA.

Above left: Differences in experience-dependent 5-hydroxymethylcytosine enrichment in fear-conditioned mice, and those that had been trained to remove the fear-conditioning. Far left: Dr Wei Wei from the Bredy Laboratory.
QBI is a world-leading research facility whose staff are committed to discovering the fundamental mechanisms regulating brain function. QBI’s research provides the opportunity to address the overwhelming tide of neurological disease and mental ill health in the community.
Laboratory Head: Dr Victor Anggono

Molecular mechanisms of AMPA receptor trafficking

The AMPA-type neurotransmitter receptors mediate most of the fast synaptic transmissions in the brain. The ability of neurons to modulate the strength of their connections, termed synaptic plasticity, is determined in part by the number of these receptors at synapses. Dysregulation in AMPA receptor trafficking results in the imbalance in neuronal excitation and inhibition, which often results in memory impairment and cognitive deficits associated with various neurological disorders, such as Alzheimer's disease, schizophrenia, bipolar disorders and autism. The major aim of the Anggono group is to understand the detailed molecular mechanisms regulating AMPA receptor trafficking, synaptic plasticity, learning and memory.

In collaboration with Professor Richard Huganir at The Johns Hopkins University School of Medicine, USA, the Anggono group identified an interaction between the AMPA receptor subunit and sorting nexin 27 (SNX27), a protein previously implicated in Down syndrome. The loss of SNX27 function impairs AMPA receptor trafficking towards the plasma membrane, resulting in impairment of long-term potentiation, a form of cellular memory. This study was published in the Proceedings of the National Academy of Sciences of the United States of America (2014).

Together with Dr Brett Collins at the Institute for Molecular Bioscience, UQ, the group is currently extending the study to provide in-depth structure-function analysis of SNX27 in regulating AMPA receptor functions.

In addition, the Anggono group uncovered the roles of post-translational ubiquitination in regulating activity-dependent AMPA receptor intracellular trafficking, sorting and degradation. Part of this work was presented at the 44th Society for Neuroscience annual meeting in Washington, D.C., USA and the 7th Garvan Institute Signalling Symposium in Sydney. The laboratory also received the Alzheimer's Australia Dementia Research Foundation Project Grant to continue this research in 2015.
Laboratory Head
Professor Perry Bartlett

Understanding the mechanisms driving hippocampal neurogenesis

Professor Perry Bartlett’s laboratory is dedicated to understanding the mechanisms that drive the continuous production of new neurons from the resident pool of neural stem cells in a region of the adult brain known as the hippocampus. This process, called neurogenesis, slows as we age, and this loss of neurons has been associated with a loss of cognitive function. The group is now focused on identifying the factors that can trigger activation of stem cells to enhance production of these newborn neurons.

Hippocampal-dependent functions, such as learning, memory and mood, are regulated by the neurotransmitter norepinephrine, which exerts its effects by binding to adrenergic receptors. The Bartlett laboratory, with collaborators from the Tata Institute of Fundamental Research in India, demonstrated the importance of the balance between α2- and β-adrenergic receptor activity (Jhaveri et al., PLOS One, 2014). The study shows that, when stimulated, α2-adrenergic receptors inhibit whereas β-adrenergic receptors enhance precursor cell activation and neurogenesis in the hippocampus. This study provides a potential mechanism by which norepinephrine-promoting drugs could enhance adult neurogenesis.

The group also published work showing that blockade of microglial KATP channels abrogates the suppression of precursor cell activity by inflammatory cytokines (Ortega et al., Glia, 2014). This finding adds to our understanding of the role of microglia in regulating neurogenesis, as previous work has shown that KATP channel blockade promotes neurogenesis after stroke.

The Bartlett laboratory also conducts research into the treatment of spinal cord injury. They have shown that blocking the activity of the EphA4 receptor results in significantly improved recovery of motor function after spinal cord injury. In 2014, Professor Bartlett, with Associate Professor Martin Lackmann and Professor Andrew Boyd, published a review (in the journal Nature Reviews Drug Discovery) on the rapidly evolving area that is therapeutic targeting of Eph receptors and their ligands.
Epigenetic mechanisms regulating memory

The extinction of conditioned fear—the reduction in response to a feared cue when the cue is repeatedly presented without any adverse consequence—is an important model for the treatment of anxiety disorders. Like other forms of learning, long-lasting memory for fear extinction depends on coordinated gene expression and the synthesis of new synaptic proteins. This process involves a tightly controlled interplay between transcriptional machinery and enzymes that regulate chromatin structure, a relatively recent field of research referred to as epigenetics.

Research in the Bredy laboratory is elucidating how the genome is connected to the environment through epigenetic modifications, and how this relationship shapes behaviour across the lifespan. The group is particularly interested in how epigenetic mechanisms, including DNA methylation, histone modifications and the activity of non-coding RNAs, regulate the formation and maintenance of memory.

2014 was a productive year for the laboratory, which published new studies on the role of DNA methylation and neural plasticity in the journals Proceedings of the National Academy of Sciences of the USA; Genes, Brain and Behavior; and the European Journal of Neuroscience. In other work, which appeared in the journal Molecular Psychiatry, together with collaborators the group demonstrated that the long non-coding RNA Gomafu is both activity-dependent and associated with schizophrenia. The work received significant exposure in 2014 with invited talks at several international meetings, including those for the Molecular and Cellular Cognition Society, the Federation of European Neuroscience Society in Italy, the Canadian Association for Neuroscience in Montreal, and the 5th ERTC Conference in Shanghai, China.
Laboratory Head
Dr Timothy Bredy

Translation of cognitive tasks for animal models of neuropsychiatric disorders

Associate Professor Thomas Burne’s group studies brain development and behaviour in animal models. The group is focused on investigating the underlying biological basis for schizophrenia, with the goal of finding public health interventions that will alleviate the burden of this disease.

The group has been exploring the impact of developmental vitamin D deficiency on brain development, the impact of adult vitamin D deficiency on brain function and behaviour and, more recently, has been establishing novel ways to assess cognitive behaviour in rodents.

In 2014, the Burne group built on previous research on low prenatal vitamin D (the ‘sunshine hormone’) to show that adult vitamin D deficiency is also associated with alterations in behaviour, brain neurochemistry and receptor profiles. They have discovered that low vitamin D levels during adulthood affect the balance of excitatory and inhibitory neurotransmitters in the brain, as well as altering cognitive behaviour in rodents.

These results provide the first evidence in mice to show that adult vitamin D deficiency impacts on neurotransmitter systems that are affected in a number of neuropsychiatric conditions, including autism, schizophrenia and depression.

Ongoing National Health and Medical Research Council funding allows the group to dissect the exact neural pathways involved in cognitive impairments of attentional processing in vitamin D deficient animals to model the cognitive symptoms of schizophrenia.

The team has also created and validated a unique cognitive task for rodents that mirrors the continuous performance task in humans. The group’s goal is to provide a novel tool for cognitive research in rodents and to uncover more about the pathophysiology and drug treatment of cognitive symptoms in schizophrenia.

Not pictured: James Peak.

Image: Touchscreen technology allows us to investigate cognitive performance in rodents using tasks that are similar to human tasks. In this paradigm the mouse learns to touch either horizontal or vertical white stripes to receive a sweet reward.

Microglia (green) are measured to determine whether adult vitamin D deficiency dysregulates neuronal function within the hippocampus (blue).
Laboratory Head
Dr Allen Cheung

Computational theory of space and the brain
The core research of Dr Cheung's laboratory is aimed at understanding the fundamental brain computations required for spatial navigation. Spatial navigation is one of the oldest and most widespread brain functions in the animal kingdom. The cells, circuits and computations required for animals to search for resources, return home, and go back to those resources later are subjects of intense research worldwide.

Path integration is one strategy used by vertebrates and invertebrates alike, and may be the common 'scaffold' required for spatial navigation. It is the process whereby estimated self-motion is integrated over time to yield an approximate vector between the starting location and current location. This form of navigation is prone to noise, which leads to errors in navigation. It has long been assumed that animals must use external cues to correct for such errors. Surprisingly, the Cheung laboratory recently found that external cues are not always necessary. In fact, in a wide range of bounded environments, an animal can theoretically combine a 'mental map' with noisy self-motion cues to accurately track its location, without sight, sound, touch, smell or any other external sensory input. This applies to any space with one-fold rotational symmetry, such as a kite-shaped or egg-shaped arena.

These unexpected results highlight the importance of mental maps for navigation, the need for great care in interpreting experimental results obtained inside any arena, and opens up new avenues to study the mammalian spatial memory system. Collaborative projects are being planned at QBI to test novel and important theoretical predictions arising from this work, in both humans and rats.

Research from the Cheung laboratory was published in the Proceedings of the National Academy of Sciences of the USA, PLOS Computational Biology, and Journal of Theoretical Biology in 2014.

Image:
A simulated rat uses a population of hypotheses to determine its location by combining noisy information with a 'mental map'.

A mathematical representation of the activity of three simulated grid cells, encoding a kite-shaped space (red) and surrounding areas (black).
Laboratory Head
Professor Charles Claudianos

Laboratory Head
Dr Allen Cheung

Senses and synapses
The development of the nervous system occurs in two ways: that which is determined by our genetic program, helping to direct cells to replicate and differentiate, producing neurons that can project to and connect with other neurons and innervate muscle and tissues typical of a developing fetus; and that which requires the same genetic program to respond to environmental stimuli, learn, acquire and recall memory and is subject to constant cellular/neuronal remodeling throughout life. Within this framework the Claudianos group works to understand the biological basis of neurodevelopmental disorders such as autism.

2014 Laboratory Members L–R/T–B:
Charles Claudianos, Joon-Yong An, Stephanie Biergans, Ming-Yu Chen, Alexandre Cristino, Nivetha Gunasekaran, Aoife Larkin, Ramesh Narayanan, Michelle Watts, Sarah Williams.

Image: Immunostaining of neuroligin 2 (orange/yellow) and overlapping RNA expression of embedded miR-932, associated with learning and memory integration regions (mushroom bodies) of the bee brain. DNA staining of cell bodies is shown in blue/purple.

A hypothetical network of 4,000 genes associated with mental health disorders including autism spectrum disorder, X-linked intellectual disability, attention deficit hyperactivity disorder, and schizophrenia.

Current work involves genome sequencing of families affected by autism spectrum disorder (ASD) to identify risk genes that are often involved with nerve cell interaction. These molecules are being characterised using human neuronal cells, and aberrant cellular functions including changes in nerve cell connections (affecting neuronal projections and synapses) are helping to measure the impact of human DNA variations. The laboratory also examines the biological relevance of genes and gene regulation, including epigenetic mechanisms such as methylation and microRNA, on brain plasticity.

Due to its range of sophisticated behaviours and documented brain plasticity, the honey bee is used by the Claudianos laboratory as a neurobiological model.

Key research findings:
• First to show that the sense of smell (olfactory receptor expression) is regulated by long-term memory formation (Claudianos et al. 2014, European Journal of Neuroscience; Faculty 1000 publication).
• Whole genome (exome) sequencing of Australian families with ASD confirms the AXAS™ model (Cristino et al. 2014, Molecular Psychiatry) can be used to predict genetic risk of autism.
• First to show that DNA variants inherited from parents with a broader autism phenotype (BAP) have a significant association with ASD (An et al. 2014, Translational Psychiatry).
• First to show that non-coding RNAs (neuroligin-associated miR-932) target the key development molecule actin and affect learning and memory (Cristino et al. 2014, Nature Communications).
Laboratory Head
Associate Professor Helen Cooper

Molecular mechanisms that regulate new neurons in the brain

The goal of the Cooper laboratory is to understand the fundamental molecular and cellular biological processes within the neural stem cell niche that govern the development of the neocortex. In the embryonic cortex, neural stem cells undergo self-renewing divisions or switch to asymmetric divisions to generate new neurons. Understanding this critical decision-making process is of major importance as an imbalance between stem cell and neuron production is causative for cortical malformations and has also been linked to autism, intellectual disability and schizophrenia.

The Cooper group has discovered that the stem cell receptor neogenin is essential for maintaining the integrity of the cortical stem cell niche. They found that neogenin is a key regulator of neural stem cell division as it closes down the cell cycle and encourages neuronal differentiation. Shutting down neogenin signalling in the embryonic mouse leads to disruption of cortical development. Strikingly, these phenotypes closely parallel those seen in humans, thereby implicating neogenin in the aetiology of cortical malformations.

The six layers of the adult cortex are comprised of distinct pyramidal neuron subtypes that work together in complex neural networks to shape cognitive and behavioural outcomes. This raises the intriguing question of how different subpopulations adopt their unique identities. Members of the Cooper laboratory have identified a new signalling pathway activated by the Ryk receptor, which promotes the acquisition of certain layer-specific identities while suppressing other subtype identities. Ryk mutations lead to an imbalance in neuronal subtypes, suggesting a link to intellectual disability.

Image: Representative image of the actin cytoskeleton at the site of junctions in polarised epithelial cells, acquired using super-resolution structured illumination microscopy (SIM). Image by Natalie Lee.

The birth of new neurons (green) in the hippocampus.
Understanding the aetiology of Alzheimer's disease

The Coulson laboratory is investigating why certain neurons die in Alzheimer's disease (AD) and how that affects cognition. Their work focuses on the p75 neurotrophin receptor and its role in neuronal loss, particularly nerve cell degeneration that occurs in the basal forebrain.

Basal forebrain neurons are important for learning and memory, and post-mortem studies show they can be selectively lost in AD. The current treatment for AD patients targets the function of basal forebrain neurons. However, significant loss of these neurons has already occurred in the majority of AD patients prior to treatment. Because these drugs are only efficacious while the neurons are alive, it is not surprising the treatment is of limited value to most patients.

The Coulson group, in collaboration with scientists from the CSIRO, has developed a method to measure basal forebrain loss in humans using magnetic resonance imaging (MRI). In a population of more than 200 elderly subjects, they found that basal forebrain atrophy occurs early in AD and is correlated with cognitive impairment. They are now testing whether the MRI method can be used to predict which AD patients are most likely to get benefit from the currently available AD drugs.

In addition, they found that basal forebrain loss is correlated with the development of another AD hallmark—amyloid-β plaque deposition (measured using positron emission tomography; PET imaging). This correlation occurred even in a group of people without cognitive impairment but who are considered susceptible to developing dementia. Indeed, by assessing the entire group longitudinally they found subjects with basal forebrain atrophy were more likely to undergo cognitive decline over the subsequent 18 months. Importantly, parallel, ongoing studies in the Coulson laboratory using mouse models of AD indicate that basal forebrain loss might induce increased amyloid-β production, and therefore degeneration of these neurons may be a very early aetiological factor in the development of the disease.
Laboratory Head
Associate Professor Ross Cunnington

Brain processes for action, mirroring, and empathy

The Cunnington laboratory focuses on the brain processes involved in planning and preparing for our own voluntary actions, as well as neural ‘mirroring’ processes that are important for our ability to perceive and understand others’ actions, intentions, and emotional states.

Research from the group is examining brain processes important for the planning and coordination of voluntary movement before its initiation.

Using the new 7 Tesla MRI scanner at UQ, the group is examining the function of the fine circuitry of deep regions of the brain, known as the basal ganglia, which are crucial for higher-order planning and control of voluntary movement.

The group is also combining MRI brain imaging with concurrent measurement of brain activity using electroencephalography (EEG). This work has revealed the crucial role of brain areas known as the supplementary motor area (SMA) and cingulate cortex in movement planning processes occurring over 1–2 seconds prior to movement initiation.

Other research in the group examines mirroring processes in the brain, whereby brain activity normally associated with first-hand experience of actions, sensations, and emotions appears to be mirrored in our brain when we observe the same actions or states in others.

Through the new Australian Research Council Science of Learning Research Centre, the group is examining the mirroring or synchrony of biological markers of brain states between children in school classrooms, examining how shared engagement between children, down to the level of their mirrored neurological or brain states, may contribute to learning in group co-operative activities.

Other research of the group is examining neural mirroring and brain processes important for empathy and the neural factors that might lead us to empathise more strongly with some people over others.
Vitamin D deficiency, autism and schizophrenia

The Eyles laboratory focusses on how risk factors for schizophrenia, such as developmental vitamin D (DVD) deficiency and maternal immune activation, change the way the brain develops. The group has developed an extremely sensitive LC/MS/MS assay for vitamin D species in blood spot cards. This assay allowed the 2010 landmark study implicating low maternal levels of vitamin D as a risk factor for schizophrenia to be conducted. The group is now examining the relationship between DVD deficiency and autism with five international collaborations, aiming to develop new ways to measure other important vitamin D metabolites in blood and brain.

Schizophrenia is closely associated with abnormalities in dopamine transmission. The group’s work in DVD deficient animals confirms there are early abnormalities in dopamine development and turnover, and its work in 2014 using human cell systems describes for the first time the direct control vitamin D exerts over dopamine production via the vitamin D receptor. The group’s work represents a synthesis of the two major theories of schizophrenia, the ‘dopamine hypothesis’ and the ‘neurodevelopmental hypothesis’, into the ‘dopamine ontogeny hypothesis of schizophrenia’.

For 15 years the Eyles group has explored the role of vitamin D in the developing brain and how DVD deficiency may affect brain function and behaviour in adult offspring. With continual National Health and Medical Research Council and now National Institutes of Health funding success in 2014, the group intends to expand the scope of its existing animal model in two critical ways. Firstly, the group will examine the effect of varying the duration and level of DVD deficiency on brain development and function. Secondly, the group will examine whether abnormalities in the ontogeny of dopamine systems observed in DVD deficient animals are shared by other prominent animal models of this disease. Promising initial data indicates that the active vitamin D hormone can suppress many schizophrenia-relevant phenotypes in other animal models.

Professor Geoffrey Goodhill's laboratory is interested in how brains process information, particularly during development. This includes how growing nerve fibres (axons) use molecular cues to make guidance decisions, how map-like representations of visual inputs form in the optic tectum and visual cortex, and how these maps code sensory information.

The laboratory is using a combination of experimental, mathematical and computational techniques. One area of focus is how nerve fibres are guided by molecular gradients to find appropriate targets in the developing nervous system. The laboratory recently investigated the shape of growth cones, the structures at the tip of developing axons. This morphology is complex and highly dynamic but the significance of these changes for either the sensory or motor roles of growth cones is mostly unknown. Sophisticated mathematical techniques for characterising shape in general have been adapted to develop a more quantitative understanding of the role growth cone shape plays in effective axon guidance.

In 2014 the laboratory was awarded a National Health and Medical Research Council Project grant to continue this work. Once nerve fibres have reached their targets, connections are refined by neural activity. The laboratory recently developed new statistical methods based on Gaussian process regression to discover new ways in which the pattern of visual stimulation early in life influences brain structure. The group is also using fluorescent labelling techniques to visualise the simultaneous activity of many neurons in the developing zebrafish brain in response to simple visual stimuli. By using mathematical techniques from statistics and information theory, it is then possible to predict how the zebrafish could optimally decode these patterns of activity in order to determine what visual stimulus was actually present. A better understanding of neural decoding is important for optimising the design of brain–computer interfaces. In 2014 the laboratory was awarded an Australian Research Council Discovery grant to continue this work.
Alzheimer’s disease—from basic mechanisms to a therapy

With an increasing life expectancy, the number of Australians suffering from Alzheimer’s disease (AD) and related dementias including frontotemporal dementia (FTD) is dramatically increasing, from 320,000 currently to almost one million by 2050.

In the Götz laboratory, which forms part of the Clem Jones Centre for Ageing Dementia Research (CJCADR), there are three major streams of research: (i) understanding disease initiation and progression at a molecular and cellular level using cellular and animal models, (ii) understanding the role that proteins implicated in dementia have in physiological processes, and (iii) the development of novel therapies.

2014 has seen significant funding from the State and Federal Government and ongoing funding from the Australian Research Council and the National Health and Medical Research Council (including a Program Grant on FTD and motor neuron disease).

Strategic decisions were the recruitment of the electrophysiologist Robert Hatch from a leading epilepsy laboratory, and Liviu Bodea (Peter Hilton Research Fellow) from an overseas laboratory working on the role glial cells have in neurodegeneration.

Research highlights include the discovery of what dictates the localisation of tau (which forms clumps in AD brains) in dendritic spines, and the role the kinase Fyn has in this process. Tau-based immunisation was revealed as a therapy for AD and FTD, with ongoing efforts focusing on so-called single-chain antibodies.

Collaborative work with Hannah Nicholas (The University of Sydney) in the roundworm C. elegans addressed the role of a tau homologue in neuronal integrity and life-span, and established a novel click chemistry method to visualise and identify newly synthesised proteins in ageing and under conditions of stress.

We have further established QBI’s first TALEN-based edited mouse genome in order to understand the trafficking of tau into dendritic spines. Also, excitingly, we have established a novel ultrasound-based therapy that in the coming year will be combined with the delivery of antibodies.
The Hilliard laboratory is interested in understanding how axons (nerve fibres conducting impulses from the neuron) develop and are guided to their targets. The group also investigates how the axonal structure is maintained over time and how it can be reconstituted after injury.

Neurons are highly polarised cells, with neurites, dendrites and an axon forming distinct morphological and functional domains. How a neuron decides on the number of neurites to extend is not well understood.

Using *C. elegans* mechanosensory neurons as a model system, the Hilliard group has discovered MEC-7/β-tubulin, a component of microtubules, to have a critical role in this process. In contrast to the idea that microtubules are simple building blocks or cargo-tracks of the cytoskeleton, these in vivo results are consistent with emerging evidence in vitro that microtubules can provide critical signals for axon formation.

The axon is the neuron’s longest process, but the mechanisms that allow it to maintain its structural integrity, or facilitate repair following injury, remain poorly understood.

Reactive oxygen species (ROS) are major neuronal damaging components generated in a number of neurodegenerative conditions. In a collaborative project, the Hilliard group has developed an approach to generate ROS in selective classes of neurons, which makes it possible to determine, with a genetic approach, the molecular mechanisms responsible for the ROS-mediated degeneration.

The team has also uncovered an axonal protective function for MEC-17, an α-tubulin acetyltransferase, which stabilises the cytoskeleton to allow proper transport of molecules and organelles throughout the axon (*Cell Reports*, 2014).

Using laser-based technology to axotomise single neurons in *C. elegans*, the Hilliard group has characterised neuronal regeneration in different classes of sensory neurons. In earlier work they demonstrated that axonal regeneration can occur as a result of axonal fusion, when two separated axonal fragments re-attach and restore the original axonal tract.
Mapping human and animal brain networks with neuroimaging

Convergent evidence has shown that brain functions can manifest at different scales within brain networks, and that the malfunctions associated with most psychiatric disorders are the result of faulty brain networks. The Brainnetome (www.brainnetome.org) provides a foundation for integrating the multi-level network features obtained with various functional and anatomical brain imaging technologies.

The Jiang laboratory is studying basic theory, methodologies and algorithms underpinning the Brainnetome platform, and their applications in neurological and psychiatric diseases.

In 2014, one study on the mouse Brainnetome focussed on the Disrupted-In-Schizophrenia-1 (DISC1) gene. Despite the fact that DISC1 is a promising risk gene for many mental illnesses associated with white matter abnormalities and disconnection syndromes, the roles of DISC1 in white matter development, oligodendrocyte differentiation and myelination are unclear. By performing behavioural, high resolution ex vivo diffusion magnetic resonance (dMRI) and histological examinations on the same animal, the Jiang laboratory identified significant dMRI-based abnormalities in the hippocampus and fimbria of DISC1 mice that underwent adolescent isolation, an effect that correlated significantly with specific behavioural and histological phenotypes. This suggests a gene–environment interaction may underlie a variety of neuropsychiatric disorders such as schizophrenia.

In addition to findings in animal models, the laboratory also made significant progress in human studies, particularly in the identification of Alzheimer’s disease (AD) risk genes using neuroimaging markers. Using a novel hippocampal shape phenotype derived from a computational neuroanatomy approach, the Jiang laboratory identified 18 PAK3 low frequency variants that have significant effects on β-amyloid production and the severity of AD symptoms via haplotypes, and have large effects on late onset AD risk, particularly for males or the non-APOE ε4 population. This finding provides new insight into the mechanism of AD development, and has clinical significance due to the enrichment of these variants in AD patients.
Laboratory Head

Professor Joe Lynch

Discovering new drugs for inhibitory neurotransmitter receptors

The Lynch laboratory's major research interest concerns the molecular structure and function of the glycine and GABA_A receptor (GABA_A R) chloride channels that mediate inhibitory neurotransmission in the brain.

The GABA_A R is an important therapeutic target for sedative and anxiolytic drugs and the glycine receptor (GlyR) has recently emerged as a therapeutic target for pain, spasticity, epilepsy and tinnitus. The Lynch laboratory is discovering new drugs active at these receptors and the molecular mechanisms by which their structures and functions are disrupted in hereditary neurological disorders.

Chronic inflammatory pain is caused by prostaglandins modulating α_3 GlyRs that are specifically found in pain sensory neurons in the spinal cord. These 'pain-modulated' receptors represent a promising therapeutic target for chronic pain, but the problem has always been to prevent the drugs from affecting other GlyRs elsewhere in the brain. Following years of collaboration with a natural product chemist (Rob Capon, from the Institute for Molecular Bioscience, UQ) to develop new α_3 GlyR-specific drugs, the group has succeeded in developing a drug with exquisite sensitivity and specificity for α_3 GlyRs, which exerts potent analgesia in animal pain models.

As synaptic GABA_A Rs and GlyRs are formed from a wide variety of subunits, many isoforms are possible in vivo. Each isoform exhibits unique pharmacological and physiological properties, and has a unique role in brain function. Until now, it has not been possible to investigate a particular isoform in isolation in neurons due to the huge range of isoforms that are expressed simultaneously.

The group has now developed techniques for reliably generating 'artificial' inhibitory synapses that incorporate the defined GlyR or GABA_A R subunits of interest. This enables investigation of the effects of drugs on synaptic currents mediated by defined GABA_A R or GlyR isoforms, and the effect that disease mutations have on the formation and function of both types of synapses.

Not pictured: Kristin Sung.
Understanding the mechanisms of motor neuron disease using molecular genetics

Dr Mangelsdorf is head of the Peter Goodenough and Wantoks Research Laboratory, dedicated to understanding the causes of motor neuron disease (MND). MND is a neurodegenerative disease that occurs when motor neurons that control muscles degenerate. There is no cure and a person diagnosed with MND has a life expectancy of only three years.

A genetic basis for MND is suggested by families in which multiple people are affected, and several genes that play a significant role in MND have been identified. However, the cause of ALS in ~35 per cent of familial cases, and ~80 per cent of cases with no family history, remains unclear.

The Mangelsdorf group has been using next generation sequencing to generate data from MND patients and controls. In collaboration with others from QBI (Professors Bartlett, Visscher and Wray), as well as Professors Matt Brown (TRI), Huji Xu (Shanghai) and Dongsheng Fan (Beijing), sequencing data from more than 600 cases from China has been completed. In addition, the Mangelsdorf laboratory is sequencing DNA from more than 100 patients who have donated samples at the MND clinic at the Royal Brisbane and Women’s Hospital (funded by the Motor Neurone Disease Research Institute of Australia). Analysis of this data is underway and will help to uncover novel genetic contributions to the disease.

The group is also investigating the role of the RNA binding protein TDP-43 in MND. Most patients with MND have abnormal TDP-43 in their neurons. The Mangelsdorf group is testing a new mouse model of TDP-43 with the aim of revealing the effect of TDP-43 mutation on the RNAs it regulates. Based on information previously generated by the group from mouse models, the Hilliard group at QBI is studying TDP-43 mediated RNA transport in C. elegans neurons to determine the role of this cellular process in MND pathology.

In collaboration with Associate Professor Peter Noakes (QBI affiliate), who has collected muscle samples from MND patients, the Mangelsdorf laboratory will also be investigating the RNAs regulated by TDP-43 in human samples using next generation sequencing.
Laboratory Head
Professor Justin Marshall

Visual ecology—neuroscience in the real world

A systems approach to sensory neuroscience is the aim of the Marshall laboratory. Working from the outside in, visual ecology examines the biology and physics of an organism’s habitat, how light is guided through the eye’s optics to the retina, the retinal molecules and design components that absorb light, neural conduction of this information to the brain, processing and behavioural outcomes driven by the brain and finally the different types of behaviour such as sexual, territorial or defensive.

The laboratory’s mostly marine model animals are extracted from the field and include crustaceans, fish and cephalopods. In 2014 this comparative drive delivered many discoveries in colour and polarisation vision. Some core questions include interpreting the new language of polarisation communication, use of colours and unconventional colour vision systems and molecular mechanisms behind colour vision in marine organisms.

With colleagues in the USA and UK, these areas are now delivering bio-inspired solutions for imaging neural activity and the detection of cancer. Our comparative systems approach saw more than 20 articles and five books published in 2014, including work appearing in *Science*, *Current Biology*, *Proceedings of the National Academy of Sciences of the USA* and *Proceedings of the Institute of Electrical and Electronics Engineers*. Visual Ecology, a much needed field update book, was a highlight along with four edited volumes through the *Springer Series in Vision Research*, a new cornerstone reference in visual neuroscience with Professor Marshall as senior editor and co-series founder with colleague Professor Shaun Collin of The University of Western Australia.

Communicating science to the public is important to the group and collaborations with local TV and radio, the BBC, Sir David Attenborough and Atlantic Productions gathered momentum, seeing the group central to several documentary series due out in 2016. CoralWatch (the group’s environmental section) continues to grow as one of Australia’s leading citizen science groups, exploring new methods of science outreach and participation in more than 80 countries.

Image: Golgi stain of a newly discovered amacrine cell in the visual pathway of stomatopod crustaceans.
Researchers in the Mattingley laboratory investigate how the human brain gives rise to perception, cognition and the control of movement, in health and disease. They are inspired by a desire to understand how people use attention to prioritise information, whether from the sensory world or from internal thought processes. They also investigate learning, with the aim of harnessing new discoveries from the field of neuroscience to enhance learning outcomes across the lifespan.

A particularly important part of the research involves understanding how perceptual and cognitive processes can be impaired in brain disorders such as stroke. They employ a range of approaches to investigate these questions, including behavioural tests, imaging and brain stimulation methods.

In 2014, researchers in the Mattingley laboratory made several important discoveries. Graduate student Amanda Robinson published a paper in the Journal of Cognitive Neuroscience showing that inhaled odours can modify how visual areas of the human brain respond to familiar objects. This work has improved our understanding of how the various sensory areas of the brain integrate their activity.

In other work, postdoctoral fellow Luca Cocchi published a paper in Cerebral Cortex showing how frontal regions of the brain establish functional connections with other areas during complex problem-solving tasks. And postdoctoral fellow Hannah Filmer published a review in Trends in Neurosciences on a new method for non-invasive brain stimulation.

2014 also saw a number of important milestones in the Mattingley laboratory. David Painter and Amanda Robinson were awarded their PhDs and took up prestigious postdoctoral fellowships in overseas laboratories. Postdoctoral fellow Martin Sale was awarded a National Health and Medical Research Council Project grant to examine whether slow-wave neural oscillations can enhance brain plasticity, and Jason Mattingley and Marta Garrido were part of a successful bid to the Australian Research Council to establish a new $20 million Centre for Integrative Brain Function.
Laboratory Head

Professor John McGrath

The aim of the McGrath laboratory is to explore risk factors that are linked to schizophrenia and other mental disorders. They focus on non-genetic factors that are potentially modifiable.

In recent years the team has been examining the impact of low vitamin D (the ‘sunshine hormone’) during early brain development and on adult brain function.

In collaboration with Associate Professors Darryl Eyles and Thomas Burne at QBI, they have developed animal models to examine the impact of low vitamin D during gestation on brain development.

The group has established a new research program with Professor Pankaj Sah and Dr Helen Gooch to explore links between vitamin D and voltage-gated calcium channels.

Previously in 2013, Professor McGrath was awarded a prestigious National Health and Medical Research Council John Cade Fellowship in Mental Health Research. These funds have allowed the group to explore a wider range of modifiable risk factors (e.g. infectious agents, stress, cannabis, vitamin D), a more diverse range of brain-related outcomes (e.g. prenatal and neonatal brain growth, childhood neurocognition, autism, schizophrenia, other mental disorders), and a wider range of epidemiological samples (in collaboration with national and international groups).

New projects include an international study related to psychotic experiences in the general community (Harvard University and 19 other universities).

The group has also been extending studies related to vitamin D in international datasets by exploring gene–environment interactions.

In collaboration with Associate Professor James Scott (UQ Centre for Clinical Research), the McGrath laboratory commenced a clinical trials program related to improving outcomes in people with Early Psychosis.

In collaboration with hospitals and clinics in South-East Queensland, the team will examine new treatments using randomised controlled trials.
Unravelling neuronal communication and survival

2014 was a great year for the Meunier laboratory, including the award of an Australian Research Council Discovery Project grant and the publication of five peer-reviewed publications.

As part of the Clem Jones Centre for Ageing Dementia Research (CJCADR), the Meunier laboratory made a breakthrough in the fight against stroke. Claiming five million lives each year, it is the second biggest killer after ischaemic heart disease. The socio-economic burden is enormous, as those who survive stroke have to live with profound neurological deficits.

Current treatments for ischaemic stroke are inefficient and solely rely on removing blood clots in the brain, which activate inflammation and lead to worsened outcomes. In a study published in Nature Communications, the laboratory, in collaboration with several others from London and Hamburg, showed that the PI3-kinase δ inhibitor CAL-101 provided a clear neuroprotective effect by controlling the release of the pro-inflammatory cytokine Tumor Necrosis Factor-α from microglia. CAL-101 was effective in improving post-stroke recovery in mice, and it was still effective up to three hours after the clot was removed and blood started flowing. This suggests that CAL-101 or similar drugs could be given in conjunction with currently used drugs such as tPA.

The study had wide media and social media coverage including an article in The Conversation.

The team has continued to pursue its work into the mechanism of neuroexocytosis, discovering that a human mutation of the protein MUNC18-1, linked to early infantile epileptic encephalopathy, potently increased its ubiquitination and proteasomal degradation leading to a temperature-sensitive defect in exocytosis (Cell Reports). This paper was highlighted in Prime F1000.

The group also unravelled a novel mechanism allowing neurosecretory vesicles to be directed towards the plasma membrane in an activity-dependent manner (PLOS ONE).

Image: Secretory vesicles are entangled in a dense mesh of actin filaments underneath the cell membrane, ready to release their hormone or neurotransmitter content in response to stimulation. The basal cortical actin network of a bovine chromafin cell undergoes remodeling in preparation for bulk endocytosis. Act0-myosin II rings form around the neck of budding endosomes.
Laboratory Head
Professor Bryan Mowry

Exploring latest genetic findings

The Mowry laboratory aims to identify and functionally characterise susceptibility genes for schizophrenia and related disorders. The group aims to achieve this by combining genome-wide association studies (GWAS), DNA sequencing and transcriptome profiling with neuropsychological testing and neuroimaging in people with schizophrenia.

Current studies include: (i) the recruitment of a large Indian case-control and family cohort in collaboration with Dr Rangaswamy Thara (Schizophrenia Research Foundation, Chennai); (ii) neuroimaging and neuropsychological phenotyping of schizophrenia patients with major copy number variations, and comparing patients with a matched sample of healthy individuals; (iii) GWAS in homogeneous Indian and Sarawak populations, and relating the results to the latest European study results; (iv) transcriptome-wide analysis of small non-coding RNAs in post-mortem brain samples from schizophrenia patients and unaffected individuals; (v) targeted resequencing of a previously identified schizophrenia linkage region on chromosome 1 in an Indian case-control sample, using QBI’s next-generation sequencing facility; (vi) derivation of neuronal cells using induced pluripotent stem cell (iPSC) technology in a subset of schizophrenia patients and controls, in order to establish an in vitro model of disease.

Highlights during the year included (i) National Health and Medical Research Council funding (2014–16) to conduct a whole exome sequencing study of families to identify de novo and inherited mutations contributing to disease; (ii) contributions to the latest Psychiatric Genomics Consortium schizophrenia GWAS, which has identified more than 100 genetic susceptibility loci (Nature, 2014). The group also published a review in Schizophrenia Bulletin on the role for iPSCs in schizophrenia research.

As Director of Flow Cytometry for both QBI and the Australian Institute for Bioengineering and Nanotechnology, Mr Geoffrey Osborne leads a team that provides crucial cell sorting and analysis services to researchers both within QBI and across the broader university. The laboratory specialises in the analysis and separation of cells derived from a variety of sources such as solid tissue, blood and cultured cell lines.

The wide diversity of scientific areas in which flow cytometry can be applied has resulted in a number of collaborative projects. One critical area that has been addressed in the past year is the defining of absolute cell counts by flow cytometry. To date, accurate determination of the number of cells with characteristics of interest by flow cytometry has not had widespread uptake in the research setting. The group published a paper showing that a simply volumetric method provides results that are comparable to those obtained using commercial counting beads, or those obtained using a 'gold standard' haematology analyser. The implication of this work is that now absolute counts of numbers of particular cells present in blood or tissue can be quantified and loss or gain related to disease, or in response to stimuli, can now be readily quantified.

The quantification of particular microRNAs using a novel flow cytometry assay is another area that the laboratory actively pursued in 2014. MicroRNAs have been shown to be critical regulators of cell growth and differentiation in glioblastoma, the aggressive form of brain tumour that has been a research focus of this laboratory for a number of years. Using a novel approach based on multiplexed nanorod probes, the laboratory has shown that it is possible to detect varying microRNA levels in human tumour samples.

Mr Geoffrey Osborne holds a joint appointment with the Australian Institute for Bioengineering and Nanotechnology.

The gonometric nozzle assembly in a cell sorting flow cytometer. This feature allows to the use of low operating pressures that improves assay sensitivity and allows the generation of results such as those on the right.
Regulation of stem cell differentiation

Neural stem cells provide the building blocks from which the neurons and glia of the mature brain are generated. During development, the control of how these stem cells either self-renew or differentiate is crucial to the correct formation of the brain. Moreover, neural stem cells are also found in the adult brain, where they provide ongoing neurogenesis throughout life. Understanding how these neural stem cells are regulated is critical if we are to understand the normal trajectory of brain development, and can also provide insights into developmental disorders and disease.

The Piper laboratory studies the genes that control neural stem cell differentiation in both the developing and adult brain. To do this it uses mouse model systems and in vitro cell culture paradigms to investigate the key processes behind the biology of neural progenitor cells, and to reveal the genetic hierarchy that controls neural progenitor cell differentiation. Moreover, the Piper laboratory is also applying these findings to investigate disorders such as glioma, which are characterised by unrestrained stem cell proliferation.

The group’s recent findings reveal how neural stem cell development and differentiation within the embryonic and adult brain are regulated by a family of transcription factors known as the nuclear factor one family (NFI). They have shown that NFIB is critical for the formation of the hippocampus, a key site for learning and memory within the brain (Piper et al., Journal of Neuroscience, 2014). Furthermore, the group has shown that another NFI family member, NFIX, is also required for the formation of the hippocampus (Heng et al., Cerebral Cortex, 2014). Current work in the Piper laboratory is aimed at further elucidating the targets of NFI transcription factors, and how misregulation of this transcription factor family can culminate in brain cancer.
Olfactory plasticity: how the brain makes sense of scents

Researchers in the Reinhard laboratory investigate how the brain processes sensory information and translates it into behavioural activity, thus linking brain function to behaviour. In particular, the group studies the mechanisms underlying learning of odours, and how olfactory experiences and memories modulate brain function.

The laboratory uses insect model systems in combination with human studies and integrates behavioural approaches with physiological and molecular approaches.

Smell memories are some of the most salient that humans form in their lives, and a mere whiff of an odour can trigger recall of long-forgotten events. However, how we perceive different scents, aromas and flavours changes throughout our lives, which can affect our preferences for different foods or beverages.

The Reinhard laboratory has led an international study that has boosted understanding of this process, by showing that olfactory memory formation plastically regulates olfactory receptor expression in the sensory periphery.

Using an insect model with a superb capacity for learning odours, the honeybee, they showed that formation of a particular odour memory in the brain modulates expression of the respective receptor molecules in the sensory periphery, the bee’s antennae. This research demonstrates for the first time that the ability to smell different things is experience-dependent and modulated by scent conditioning.

The findings may help explain the wide variability of smell perception in humans and the neurological mechanism underlying the common phenomenon of ‘acquired taste’, where repeated sensory experience with a flavour or aroma leads to perceptual changes. This knowledge will provide an enormous insight for understanding flavour and aroma perception, and how our sensory experiences shape our preferences. The study, which was published in the European Journal of Neuroscience, was recommended by the Faculty of 1000 and highlighted by Global Medical Discovery.

2014 Laboratory Members L–R/T–B: Judith Reinhard, Stephanie Biergans, Ming-Yu Chen, Alexandre Cristino, Shao-chang Huang, Homayoun Kheyri, Aoife Larkin, Morgane Nouvian, Amanda Robinson.
Laboratory Head
Professor Linda Richards

Mechanisms of brain development required for brain function

They are interested in how such mechanisms may be disrupted during development and how this affects the cognitive outcome of individuals.

2014 was a very productive year for the laboratory. One highlight was a paper showing that a balance of activity between the two hemispheres of the brain is important for its wiring (Suárez, Fenlon et al., Neuron, 2014). The group is now investigating what aspects of activity are important for brain wiring as this may provide insight into the causes of developmental disorders of brain wiring such as malformations of the corpus callosum.

A number of collaborative projects also came to fruition with groups in the USA, China and Europe, which resulted in high impact publications on mechanisms underlying brain wiring in mouse models of human congenital malformations. A clinical review on the genetics and developmental mechanisms related to human malformations of the corpus callosum with special-ist-physician colleagues in San Francisco was also published (Edwards et al., Brain, 2014).

The laboratory has employed a wide variety of sophisticated techniques, from genetics and gene manipulation in animal models to high resolution microscopy and multimodal magnetic resonance imaging.

Awards to laboratory members included the UQ Academic Medal to BSc(Hons) student Jonathan Lim. PhD student Laura Fenlon was awarded a competitive student presentation prize (second place in the QBI graduate student symposium) and the QBI prize for best student paper (co-first place), and two competitive travel scholarships. Dr Rodrigo Suarez was awarded two travel scholarships to attend a conference on brain evolution in Toledo, Spain from the International Brain Research Organisation (IBRO) and Contributing to Australian Science and Scholarship (CASS).

Finally, Dr Jens Bunt received independent project funding from the Brain Foundation for his work on brain cancer.

Research

In naturally acallosal animals, such as marsupials, cortical neurons (green) send axons to the opposite hemisphere via the anterior commissure. Image by Rodrigo Suárez.
Laboratory Head
Professor Pankaj Sah

Neural circuits and mechanisms underpinning learning and memory

The Sah laboratory studies the physiological and molecular mechanisms that underlie behaviour, learning and memory formation. Using a combination of electrophysiology and molecular techniques, in conjunction with behavioural studies, the laboratory seeks to understand the neural circuitry that underpins learning and memory formation in animal models. These studies are complemented by electrophysiological recordings and behavioural analysis in humans.

The laboratory focuses on the part of the brain called the amygdala. The group uses viruses to deliver optogenetic constructs to neurons in defined regions, and then records the electrical activity in acute brain slices to study the properties of the connections in these neural circuits. The group has mapped the circuits that provide auditory and noxious information to the amygdala, and studied the circuits that connect the amygdala with the prefrontal cortex and hippocampus. In collaboration with Professor Joe Lynch at QBI, the group is exploring the molecular identity of receptors that are present at inhibitory connections in the amygdala.

In the last year they have concentrated on the properties of synaptic γ-aminobutyric (GABA) receptors that contain γ1 subunits. These receptors are enriched in specific circuits in the amygdala and could be targets for the development of new anxiolytic drugs.

For the human studies, Professor Sah collaborates with Professor Peter Silburn and Dr Terry Coyne (UQ Centre for Clinical Research) to study neural activity in the human brain in patients undergoing neurosurgery for deep brain stimulation. These recordings are revealing the activity in the human brain in a range of movement disorders, such as Parkinson’s disease, essential tremor and Tourette’s syndrome. In 2015, the group will be involved in a clinical trial for the treatment of obsessive compulsive disorder.
Laboratory Head
Professor Mandyam Srinivasan

Visual guidance in bees, birds and flying machines

Birds and bees display remarkable navigational capacities, despite their diminutive brains. The Srinivasan laboratory is using honeybees and budgerigars as models to understand how animal vision guides flight and enables navigation, and to design biologically inspired systems for the guidance of aircraft.

The bee laboratory is examining how aggressive honeybees pursue and intercept moving targets. High-speed video cinematography is revealing a suite of behavioural strategies that comprise an initial ‘orientation’ phase, a subsequent tracking phase, and a final interception phase, which in combination orchestrate a stealthy and rapid arrival at the target.

The bird laboratory is investigating the behaviour of budgerigars as they move through varying environments. Examination of their flight through tapered tunnels is revealing two distinct flight modes: (i) A high-speed, energy-efficient ‘cruise’ mode, when flying in open areas, and (ii) A low-speed ‘manoeuvring’ mode, when negotiating cluttered environments. The advantage of such a strategy is that, for each speed, the distances to obstacles can be directly calibrated in terms of the optic flow that they elicit.

The biorobotics laboratory has successfully tested a novel, biologically inspired vision system that guides an aircraft on a fully autonomous circuit—comprising takeoff, cruise and return—without the use of conventional navigational aids such as GPS. This year has seen the commencement of research pertaining to three grants that were awarded to the laboratory: (i) An Australian Research Council (ARC) Discovery grant, in collaboration with QUT, to investigate the tracking of moving targets by aggressive bees, and design aircraft vision systems for automated target tracking; (ii) An ARC Linkage grant, in collaboration with QUT and Boeing, to investigate mid-air collision avoidance in birds, and to develop aircraft vision systems for collision avoidance; and (iii) An ARC Discovery Outstanding Researcher Award to study the perception of pain in invertebrates.

2014 Laboratory Members L–R/T–B: Mandyam Srinivasan, Julia Groening, Michael Knight, Nikolai Liebsch, Ingo Schiffner, Dean Soccol, Reuben Strydom, Gavin Taylor, Saul Thurrowgood, Hong Vo, Michael Wilson.

Not pictured: Peter Anderson, Aymeric Denuelle.

Image: Quadrotor aircraft, designed and developed in the biorobotics laboratory, for implementing and testing biologically inspired strategies for aircraft navigation.

Illustration of a budgerigar (yellow) closing its wings momentarily as it flies through a narrow gap (purple).
Laboratory Head
Associate Professor Bruno van Swinderen

Drosophila behaviour and cognition

The van Swinderen laboratory uses the fruit fly model *Drosophila melanogaster* to investigate perception and cognition. By combining powerful molecular genetic tools with high-throughput behavioural assays and electrophysiology, they are able to study the underpinnings of complex phenomena such as selective attention, memory, general anaesthesia, and sleep in the more simple fly brain.

To pay attention, learn, and sleep, a brain must be able to suppress parts of the outside world effectively. Understanding how this suppression mechanism works is a central question of the laboratory, with a focus on visual systems.

In collaboration with the Srinivasan group at QBI, the laboratory has created novel paradigms for tracking insect behaviour in virtual reality environments (*Journal of Neuroscience Methods*).

Closed-loop walking paradigms for honeybees and fruit flies allow these insects to report their attention-like states in different experimental scenarios. Combined with multichannel electrophysiology techniques developed in the laboratory, these paradigms provide insight into how small brains pay attention to the world.

For example, research in the laboratory found that attention-like signals in the honeybee optic lobes precede behavioural action selection (*Proceedings of the National Academy of Sciences of the USA*).

Pharmacological work in the laboratory is centred on testing a hypothesis for general anaesthesia, and suggests that this common procedure actually involves two distinct steps: first a sleep process is activated in the brain, and this is followed by a synaptic defect (*BioEssays*).

The *Drosophila* model is ideally suited to testing this hypothesis, because both sleep pathways and synaptic mechanisms can be manipulated.

In order to better measure sleep and general anaesthesia in flies, the laboratory has invented a sophisticated platform called DART, *Drosophila ARousal Tracking* (*Scientific Reports*).
Laboratory Head
Professor Peter Visscher

Genomes, genes and common diseases

The Visscher laboratory specialises in quantitative and statistical genetics, population genetics, human genetics and bioinformatics, with the ultimate aim of trying to understand the genetic basis of differences in risk for disease and other phenotypes between individuals. Applications of the research include dissection of genetic variation underlying cognition and cognitive change, and quantification and deciphering of the genetic architecture of psychiatric disorders.

The group uses theoretical derivations, simulation studies, development of new analytical methods and software tools, and the application of advanced statistical analysis methods to genetic and phenotypic data.

In 2014, using human height as a model trait, the group demonstrated, in collaboration with a large international research consortium, that individual differences in this complex trait are caused by the cumulative effect of thousands of genes, and new analytical methods were developed to find the responsible genes.

The exact same analysis methodology can be used to detect genes underlying cognitive ageing and dementia.

The group has also contributed analysis expertise to a large number of international research consortia that have found genes affecting schizophrenia, obesity and auto-immune diseases.

In collaboration with researchers from the QIMR Berghofer Medical Research Institute, Professor Visscher has established the Brisbane Systems Genetics Study, with the aim of understanding genetic variation in the expression of genes and its correlation with individual differences in complex traits.

In addition to the Brisbane study, a long-standing collaboration with Professor Ian Deary (University of Edinburgh, UK) has been expanded through joint projects on the genomics underlying cognitive ageing.

By combining these studies, the group has shown that epigenetic DNA changes—modifications that are not due to sequence differences between people—can be stable over the entire human life course.

Stability in 70-90 year olds
Heritability in 12-16 year olds

Evidence for genetic heritability for epigenetic differences between people. All across the genomes there are DNA modifications that are shared between relatives because of their DNA sequence.
The brain is fundamentally a computational device in which nerve cells are arranged in intricate networks. Within these neuronal circuits computations are performed that underlie all aspects of behaviour. The Williams laboratory is investigating how nerve cells and neural circuits implement computations. They use advanced electrophysiological and optical techniques to investigate how neurons integrate input signals termed synaptic potentials, received throughout their dendritic tree, to produce an output signal. This work has shown that single neurons can operate as complex computational devices, acting to produce finely tuned output signals through the engagement of active dendritic synaptic integration, and highlights how the brain can operate in a fast and energy efficient manner. The laboratory seeks to understand the rules and mechanisms that form and control this rich neuronal integrative process and explore the relevance to the operation of neuronal networks in health and disease. Over the last few years they have discovered that active dendritic integration is recruited by natural stimuli, implementing circuit-based computations in the neuronal networks of the neocortex and retina to underlie key aspects of perception and behaviour. Ongoing work is aimed at discovering the circuit elements that drive and control active dendritic integration. For example, their recent work has demonstrated that active dendritic integration in the output neurons of the neocortex is strongly modulated by the cholinergic system, providing a plausible candidate mechanism for attentional processing. Furthermore, in the retina they are dissecting the functional impact of the co-release of neurotransmitters from amacrine cells on the control of active dendritic integration in classes of ganglion cells, in order to better understand visual processing. This work will lead to a better understanding of how networks of neurons function, and ultimately how these processes are disturbed in disease.
Research

Probing of the genomic complexity between & within psychiatric disorders

Research in the Wray laboratory focuses on understanding the genetic contribution to psychiatric and neurological disorders. The group specializes in the development of new analytical methods and the application of advanced statistical methods to the analysis of neuro-disorders. Group members play leading roles in international consortia including the International Psychiatric Genomics Consortium.

In 2014 the group has expanded its research to include motor neuron disease (MND) and is a founding laboratory within the new Centre for Neurogenetics and Statistical Genomics.

The breadth of research undertaken in the Wray laboratory is illustrated by the publication portfolio with studies of postnatal depression (Archives of Women’s Mental Health), cannabis use (Molecular Psychiatry) and major depression (Biological Psychiatry). They played a role, both directly and over the past years, in the landmark paper published in Nature that identified >100 loci associated with schizophrenia.

The group’s international standing is recognized through invited reviews published in Nature Reviews Genetics, Nature Reviews Neuroscience and Journal of Childhood Psychology & Psychiatry.

Current research focuses on the genetic relationship between schizophrenia and rheumatoid arthritis (using new genomic data to address an old epidemiological puzzle), the genetic heterogeneity of schizophrenia and the gene–environment interactions in the context of psychiatric disorders.

In 2014 the group worked with two genome-wide methylation data sets (the Lothian Birth Cohorts of 1921 and 1936, and the Sino-Australian MND Cohort) and these new data are providing novel insights into environmental and genetic risks.

A National Health and Medical Research Council (NHMRC) Early Career Fellowship has taken Dr Enda Byrne to work at the sleep clinic at the University of Pennsylvania. Grants awarded in 2014 include an NHMRC Principal Research Fellowship, an NHMRC Career Development Fellowship to work on MND, three NMHRC project grants, a National Alliance for Research on Schizophrenia and Depression grant from the US Brain and Behaviour Foundation and an Arthritis Australia Fellowship.

Research

- A
- B
- C
- D
- E
- F
- G
- H
- I
- J
- K
- L
- M
- N
- O
- P
- Q
- R
- S
- T
- U
- V
- W
- X
- Y
- Z

Genetics

- A
- B
- C
- D
- E
- F
- G
- H
- I
- J
- K
- L
- M
- N
- O
- P
- Q
- R
- S
- T
- U
- V
- W
- X
- Y
- Z

Genetic effects on disease, from Witte, Visscher and Wray, (Nature Reviews Genetics, 2014) in which methods from genetics and epidemiology are brought together under a unified framework.
The Yang laboratory, within the Centre for Neurogenetics and Statistical Genomics (CNSG), works on the interplay of genetics, genomics, statistics, and computer science. Research in the Yang laboratory focuses on developing new statistical methods and performing large-scale analyses of high-throughput genetic and genomic data to understand the genetic architecture of complex traits in humans, with specific interests in model traits such as height, and common diseases such as obesity and schizophrenia.

As demonstrated by the number of citations, the methods and software tools developed by the group have been widely used in the research community for a range of complex traits and diseases. The mixed linear model (MLM) approach has become popular in genome-wide association studies (GWAS) since it controls for population stratification and relatedness in the GWAS cohort. The group used theoretical derivations, simulations, and analyses of real data to demonstrate why the MLM-based association analysis approach is under-powered, and proposed a solution that controls for population structure without sacrificing the statistical power (Yang et al., Nature Genetics, 2014).

In collaboration with the GIANT consortium, the group performed a large-scale genetic study for human height using a data set of ~250,000 individuals, with each individual having ~2.5 million single nucleotide polymorphism (SNP) markers, and identified 697 SNPs that are associated with height. These 697 SNPs clustered in 423 genomic loci are enriched for genes and pathways known to be involved in growth and also implicated genes and pathways not highlighted earlier. The paper was published in Nature Genetics, with Dr Yang as the joint first author.
The Clem Jones Centre for Ageing Dementia Research (CJCADR) was opened in February 2013 as a major research centre within QBI. The Centre, headed by Professor Jürgen Götz, is focussed on research into the prevention and treatment of dementia.

During 2013 both Queensland State Government and the Federal Government awarded a total of $18 million over five years as a commitment to accelerate the research towards a cure for dementia.

The research undertaken by CJCADR elucidates, at a biochemical, molecular, behavioural, electrophysiological, histological and systems level, how ageing dementia causes neurodegeneration, the decline of memory and motor functions.

Researchers from the following QBI laboratories undertake dementia-related research within CJCADR: Bartlett, Coulson, Hilliard, Mangelsdorf, Meunier, Anggono and Götz.

To expand on this research, during 2014 the Centre commenced a program of recruitment to attract additional international researchers.

“ar number of outstanding researchers have been appointed to the Centre: Dr Liviu Bodea from a leading neuroinflammation laboratory in Germany and Dr Robert Hatch from a leading epilepsy laboratory in Melbourne,” Professor Götz said.

“We are very fortunate that in 2015 Dr Zhitao Hu from Harvard University will join the Centre as a Group Leader, as will Dr Patricio Opazo from the Bonhoeffer laboratory at the Max Planck Institute of Neurobiology in Munich later in the year. These recruitments will and will have synergistic effects on our research output.”

The Centre will further pursue novel strategies to reduce the burden of dementia.

“A major outcome is the discovery of therapeutic interventions to delay the onset, prevent and even cure dementia in patients, using novel drugs and better methods to deliver them to the brain. Another outcome is the development of biomarkers to diagnose dementia earlier, more cheaply and with higher sensitivity and specificity and to monitor therapeutic interventions. Lifestyle strategies will also be formulated for maintaining a healthy brain,” Professor Götz said.

The Honourable Ian Walker MP, then Minister for Science, Information Technology, Innovation and the Arts, toured the Centre on 19 November as part of the announcement of the $2.5 million philanthropically funded international fellowship to tackle stroke-induced dementia.

“It is of vital importance to understand this particular type of dementia, as it is the cause for around 40 per cent of dementias. This is another wonderful addition to our dementia initiative,” said QBI Director Professor Perry Bartlett.
In 2014 QBI launched the Centre for Neurogenetics and Statistical Genomics (CNS Genomics or CNSG) to bring together a team of researchers with expertise in neurogenetics, neuropsychiatric genetics, statistical genomics, bioinformatics and computational biology. QBI Faculty Professors Peter Visscher and Naomi Wray co-direct the Centre, while Dr Jian Yang heads the core theme of the Centre. CNSG also includes the laboratory of Dr Marie Mangelsdorf, linking QBI’s analysis and wet-laboratory based research on motor neuron disease (MND).

The Centre comprises about 30 staff, all funded by competitive grant funding. The core theme of the Centre is the genomics of complex traits. Complex traits are quantitative measures, diseases or disorders that are underpinned by multiple genetic and non-genetic factors, which includes all the common diseases such as cancers, immune disorders, as well as some central nervous system disorders. Research in the core theme focusses on development of new methodologies that are disseminated to the research community as publicly available software for the analysis of genomic data, which can comprise a million data points on hundreds of thousands of individuals. Around this core theme are themes that focus on applications to disorders or traits. Three of these themes are phenotype based and represent some major national and international collaborations. The fourth theme focusses on the genetics of genetic expression and DNA methylation to further understand the mechanisms of genomic control of phenotypes. CNSG members work across multiple themes allowing important cross-fertilisation of ideas.

CNSG also hosts the QBI Bioinformatics core led by Dr Qiong-Yi Zhao. Completed in October, Level 7 of QBI was refurbished to house the Centre. In celebration of the new centre, the first Australian Neurogenetics Conference was organised, bringing close collaborator Professor Patrick Sullivan to Australia as the keynote speaker. In November Professors Visscher, Wray and Dr Yang spent three weeks touring research institutes in China to promote further collaborations there.

CNSG experienced outstanding grant success in 2014 gaining two National Health and Medical Research Council (NHMRC) Fellowships, two NHMRC Career Development Fellowships, five NHMRC Project Grants, an Arthritis Australia Fellowship, a NARSAD grant and a UQ Early Career research grant.
The year started with QBI’s Professor Pankaj Sah taking up the position of Director of the Science of Learning Research Centre (SLRC) following the departure of Professor Ottmar Lipp from UQ to take up a position at Curtin University in Perth. Professor Lipp did a fantastic job establishing the Centre and he continues to be involved with it as a research theme leader. Under the leadership of Professor Sah the Centre undertook a review of its research, mapping out seven programs of research running across three themes: Understanding Learning, Measuring Learning and Promoting Learning.

The programs are:

- **Understanding Learning**
- **Measuring Learning**
- **Promoting Learning**

The Centre has several exciting new initiatives for 2015.

- A teacher intern, seconded from the Queensland Department of Education, Training and Employment, has been appointed to work with researchers in the Centre. The Centre is extremely grateful to the Queensland Department of Education, Training and Employment for supporting this 12-month seconded position.

To support the Indigenous education program, Professor Cindy Shannon (Deputy Vice-Chancellor, Indigenous at UQ), has joined the SLRC Advisory Board, and a senior Indigenous Research Fellow, Tony Driese, has been appointed to the Centre and will take up an adjunct position at QBI in 2015.

A research translation group has also been established, headed by Professor John Hattie from the University of Melbourne and Associate Professor Annemaree Carroll from the UQ School of Education. Among other activities, this group will coordinate the development of course material for pre-service teacher training, Masters programs and on-going teacher professional development.

In order to ensure SLRC research remains relevant and its findings have an impact on learning, it will continue to engage with schools and the teaching community. During the year Centre researchers based at the UQ node delivered more than 20 presentations, including seminars hosted at QBI and at schools and professional development workshops for teachers.

Throughout the year more than 80 Indigenous school students, ranging in age from nine to 15 years old, visited the Centre at QBI as part of the UQ Solid Pathways Program. The Centre is extremely grateful for all the support the schools have given us throughout the year and looks forward to our ongoing collaboration.

Finally, in partnership with Nature Publishing Group, we will launch a new journal *npj Science of Learning* in 2015, of which Professor Sah will be Editor-in-Chief. This international journal will cover cutting-edge research in all aspects of learning, and will provide a forum for discussion about learning.

The SLRC would like to acknowledge the support of the Australian Research Council and our Collaborating and Partner Organisations:

Collaborating Organisations:
- The University of Melbourne
- Australian Council for Educational Research
- Charles Darwin University
- Curtin University
- Deakin University
- Flinders University
- Macquarie University
- University of New England

Partner Organisations:
- University College London
- University of London
- Carnegie Mellon University
- North Carolina State University
- Questacon
- Benevolent Society
- Department for Education and Child Development, South Australia
- Department of Education and Early Childhood Development, Victoria
- Department of Education, Training and Employment, Queensland

Image top left: Early-career researchers from the SLRC shared knowledge of learning and the brain with school children as part of UQ’s Solid Pathways Program.
2014 was a productive year within QBI’s joint research laboratories in China, with numerous visits occurring to progress current research projects and initiate new ones, and several papers being published.

A highlight was the special issue of *Science China Life Sciences*, “From Brain Function to Therapy” published in April. The journal ran several reviews, research papers and commentaries, which showcased the collaborative work that is being undertaken within the Joint Laboratory of Neuroscience and Cognition, with colleagues at the Chinese Academy of Sciences’ Institute of Biophysics (IBP) and the Joint Sino-Australian Laboratory of Brainnetome with the CAS Institute of Automation (CASIA) in Beijing.

In August the State of Queensland and the Chinese Ministry of Science and Technology (MOST) extended their partnership through the re-signing of a Memorandum of Understanding (MOU). This presented an ideal opportunity for the Institute to strengthen their relationship with China, with the signing of a Memorandum of Understanding for a new Joint Australia-China Research Centre focussed on understanding the circuitry and genetics in ageing dementia. The team, which includes researchers from QBI, IBP and CASIA, will focus on understanding the mechanisms that regulate cognitive decline and dementia in the ageing population and provide insights for diagnosis and therapy. Given the ever-increasing ageing population of both countries, this is an important endeavour.

The signing was witnessed by the Queensland Minister for Science, Information Technology, Innovation and the Arts, Ian Walker, and the Chinese Vice Minister for Science and Technology, Professor CAO Jianlin, with Minister Walker commenting that he was pleased to see that Australia’s valuable relationship with China was continuing to grow.

The Joint Sino-Australian Neurogenetics Laboratory, with colleagues at The University of Queensland Diamantina Institute and the Second Military Medical University in Shanghai, is exploring how genes influence brain development and function, and focusses on discovering the genes that cause or make individuals susceptible to certain neurological and mental illnesses. The collaboration has been extended to include researchers from QBI’s preeminent Centre for Neurogenetics and Statistical Genomics (CNSG). The joint program has already exome sequenced a large number of patients with neurodegenerative disease, with new samples continually being sourced through the CNSG. This exciting and promising work will continue in 2015.
Students play an integral role in the cutting-edge research undertaken at QBI. Students travel from as far afield as China, Latin America and Europe to study, bringing fresh, innovative and international approaches to neuroscience research at the Institute.

Students

Leonie Kirszenblat, van Swinderen Laboratory.
QBI ANNUAL REPORT 2014

Postgraduate Students

Sharma* (Coulson); and Vanesa Tomatis (Meunier) (Bredy); Amanda Robinson (Reinhard); Aanchal Simandeep Poonian (Cunnington); Vikram Ratnu (Meunier); Shao-Chang Huang (Reinhard); Thai Vinh Veronika Halasz (Cunnington); Callista Harper; Christine Dixon (Lynch); Helen Gooch (Sah); Wen-Sung Chung (Marshall); Sean Coakley (Hill)

and one MPhil* upon the following students, we congratulate each scholar on their significant research contributions and achievements.

QBI was delighted to see the conferral of 14 PhDs during the year. This reflects the Institute’s commitment to supporting and nurturing the next generation of research scientists. The total enrolment of students rose from 159 to 173, and the number of enrolled candidates for higher degrees increased by 31 to 102.

Of these enrolments, 42 were from international students who were all warmly welcomed at the Institute as they commenced their candidature. The figure also includes 20 new domestic and international students across 20 countries.

The Australian Government scholarship of Australian National University (ANU) was awarded to a student for their research higher degree studies in neuroscience. Another student was awarded the IPRS in conjunction with the top-up scholarship to support their research higher degree studies in neuroscience.

Top-Up Scholarship

Allowance Scholarship. She also received the QBI International Postgraduate Research Scholarship (IPRS), the international scholarship offered at UQ, the International (UQI) Tuition Fee Scholarship. In recognition of her excellent academic performance, she was also awarded the UQI Tuition Fee Scholarship. As Tim and Casey have made excellent strides in their MPhil studies, they have progressed up to the final year of their program.

Competitive scholarships were awarded to QBI students to attract the best students to undertake research higher degrees in neuroscience. Some of the most successful recipients were:

Anne Maallo (Philippines) was awarded the top-up Scholarship to international candidate Aanchal Simandeep Poonian (Cunnington). Lisa Yuwe (China) was the recipient of a Top-Up Scholarship awarded in conjunction with the UQ Centennial Living Scholarship.

She was also awarded the UQ Research Scholarship (UQRS) to support them towards this award. Following the completion of their research higher degree, these graduates obtained employment in laboratories in Germany, Denmark, and France, respectively.

Six domestic PhD students who commenced their research higher degree studies in neuroscience were selected to receive scholarships to attend the Society for Neuroscience meeting held in Washington in November. Karly Turner won the 2014 Chapter Travel Award and was an enormous success.

Student Publication Prize for the best published student paper in 2014 sponsored by Sigma-Aldrich, and Xiang Li was selected as the winner of the QBI Student Publication Prize for the best published student paper in 2014 sponsored by Sigma-Aldrich.

The QBI Student Association organised a number of events and seminars for students during the year. Some of the most successful recipients were:

Dr Ramesh Narayanan and Dr Roger Marek were selected to receive a world-renowned neuroscience researcher from Boeing. Also, one domestic student was awarded a world-renowned neuroscience researcher from Boeing. Another seven QBI students were selected to present short talks on their research findings during the event. Students were judged on their research findings and were selected to present short talks on their research findings.

Sixth International Travel Award (GSITA) to students were selected to present short talks on their research findings. These sessions also showcased students' work and provided a forum for students to network with their peers and experts in the field.

Students were judged on their research findings and were selected to present short talks on their research findings. These sessions also showcased students' work and provided a forum for students to network with their peers and experts in the field.

The Institute sincerely thanks its Student Association for organisation of the inaugural event, which was an enormous success.

Dr Tim Linton and Timothy Edwards, who were accepted to attend the Society for Neuroscience meeting held in Washington in November. Karly Turner won the 2014 Chapter Travel Award and was an enormous success.
Dr Sean Coakley

In 2009 I joined the laboratory of Associate Professor Massimo Hilliard to begin my PhD at QBI. The goal of my PhD was to discover novel genes involved in axonal regeneration and degeneration. The Hilliard laboratory studies these processes in the genetic model organism *Caenorhabditis elegans* (*C. elegans*), a free-living non-parasitic nematode. The transparency, small size and powerful genetic tools of *C. elegans* make it an attractive system in which to study the fundamental mechanisms of neurobiology. I was particularly excited about the prospect of being able to see nerves regenerating in living animals, in real time, and manipulating these events with genetic tools. This is something that still takes my breath away every time I see it.

As part of my PhD I developed a method of causing damage to the nematode's neurons using a light stimulated protein called KillerRed, which generates reactive oxygen species (ROS) upon irradiation. We hope this tool will allow a greater understanding of how neurons respond to damage caused by ROS, which are also generated in several neurodegenerative diseases. In addition, a second major focus of my research is how the axon of a neuron, which is the component responsible for sending electrical signals, can be repaired following damage. To study this regenerative process I developed an experimental paradigm utilising mutant animals that lack a component critical for the axon's stability. In these animals the axons are fragile and spontaneously break, allowing the study axonal repair to be achieved without the need to surgically damage the animals. A major advantage of this approach is that it facilitates large-scale genetic screens for molecules involved in axonal regeneration. Using this model, I made a major contribution to the discovery of a novel molecular mechanism that enables severed axons in *C. elegans* to rapidly fuse and repair the original connection.

Since the completion of my PhD in 2014 I have continued my exciting research in the Hilliard laboratory. I hope my research will lead to a better understanding of nerve repair caused by injury, which remains largely untreatable.
After performing my research training in Argentina, I joined Professor Frederic Meunier’s laboratory in 2010 to undertake my doctoral studies. I was sure that studying at QBI was going to be a challenge, but also a very exciting time. QBI offers great tools that students need to overcome difficult times and promote success, excellent facilities equipped with world-class technologies, very good management, as well as the possibility to discuss science with well-known researchers (QBI and UQ-based, and invited visitors). This combination makes studying at QBI an enjoyable experience.

My research focussed on deepening the understanding of neurotransmitter release and their regulatory mechanisms. By gaining experience in different techniques such as mass spectrometry, biochemistry and microscopy, I obtained evidence of how secretory vesicles are tethered to the plasma membrane of cells before their fusion, allowing sustained neurotransmitter release upon stimulation. One of the key molecules that I found to participate in this process is myosin VI. During my PhD, I showed that myosin VI regulates the availability of secretory vesicles that release their content to the extracellular space. This is a key event behind neuronal communication. My findings have not only contributed to the better understanding of neurotransmission, but also and more importantly have opened new avenues for research that could help us to develop new molecular therapies for diseases characterised by altered levels of neurotransmitter or hormone release. The results of my research during my PhD were published in the *Journal of Cell Biology* in 2013 and I was joint winner of the QBI Student Publication Prize of the Year 2013 sponsored by Sigma-Aldrich.

After obtaining my PhD in 2014, I started as a Postdoctoral Researcher in Professor Meunier’s laboratory working on the mechanism underpinning myosin VI function during neuroexocytosis.
Dr Wen-Sung Chung
QBI's goal is to make a positive impact on the Australian community by helping to reduce the huge social and financial cost of neurological and mental illness. In 2014, QBI hosted a series of high profile events and conducted a range of community outreach programs. In addition to educating Australians about the latest research findings, staff also continued their efforts to encourage the next generation to consider careers in neuroscience.
The 2014 Peter Goodenough Lecture was delivered on 10 September by Distinguished Professor Patrick Sullivan of the University of North Carolina, USA. Professor Sullivan investigates the molecular genetics and pharmacogenetics of schizophrenia, major depressive disorder, and anorexia nervosa. Based on his decades of experience, he presented a lecture on three stories that are central to the current efforts to identify the genetic basis of schizophrenia.

Firstly, he outlined the unprecedented international collaborations that made advances announced in 2014 possible—including those at QBI.

Secondly, Professor Sullivan spoke about the findings that have led to a much wider appreciation of the complexity of schizophrenia by discovering the large number of genes involved in the disorder.

Thirdly, he emphasised how researchers can begin to go beyond finding genes to using genes, with the objective to improve diagnosis, treatment, and prevention.

The Peter Goodenough annual lecture is named in honour of the late Mr Peter Goodenough (1936–2004), a QBI benefactor, whose personal battle with motor neuron disease led to a bequest to fund fundamental scientific research.

Mr Goodenough's gift is a showcase example of how members of the community can make a powerful and lasting contribution to the future health of all Australians.

Professor Lennart Mucke of the Gladstone Institute of Neurological Disease and University of California, San Francisco, USA, presented an informative 2014 Merson Lecture on understanding Alzheimer's disease. QBI was fortunate to listen to Professor Mucke, a Distinguished Professor of Neuroscience, give insight into processes that result in memory loss and other deficits.

Professor Mucke discussed some of the obstacles on the path of translating scientific insights into more effective treatments for Alzheimer's disease, and the potential strategies that could be employed to overcome them.

He expressed his opinion that more effective links are needed between basic scientists and clinical investigators, and between academia and the pharmaceutical industry.

He stressed the urgent need to expedite the discovery and validation of potential drug targets and the production of new therapeutics, and the roles these players have.

The Merson Lecture is named in honour of Dr David Merson, member of the QBI Advisory Board, whose philanthropic sponsorship of this lecture is indicative of a strong community interest in neuroscience.
Hand Heart Pocket Gala Evening

ASSC18

Super-Resolution Symposium

Ross Maclean Fellowship Race Day

Events

Right: Guests at the Hand Heart Pocket Gala Evening at Brisbane’s Customs House.

Hand Heart Pocket Gala Evening

QBI partnered with the Alzheimer’s Australia (Qld) to create a lavish event to raise funds and awareness for Alzheimer’s disease research and care. Generously supported by Hand Heart Pocket, The Charity of Freemasons Queensland, the gala evening was attended by more than 160 enthusiastic supporters who were dazzled by a night of opera and classical music.

Brisbane's iconic Customs House proved to be the perfect backdrop for the event held on 5 September, with performances held indoors and a cocktail party overlooking the Brisbane River.

Singapore Lyric Opera soprano Cherylene Liew also captivated the audience, as well as basso profundo David Hibbard, who won the 1990 German Operatic Award.

String quartet Cerebrum, consisting of the Conservatorium and UQ's finest string players, performed the well-known ‘Trout Quintet’.

Funds raised on the night supported research conducted at the Clem Jones Centre for Ageing Dementia Research (CJCADR).

ASSC18

QBI researchers played an integral role in bringing the Association for the Scientific Study of Consciousness (ASSC) conference to Australia for the first time, with ASSC18 being held at UQ during 16–19 July.

Seeking to answer what consciousness is, and how it can be measured, the conference covered topics as broad as studying pain, sleep, and attention.

The conference was organised by QBI group leader Associate Professor Bruno van Swinderen.

The conference had a number of high profile speakers, including Professor Emery Brown from the Massachusetts Institute of Technology, who addressed the audience on the topic of what happens to us when we ‘go under’ and are anaesthetised.

Distinguished Professor Jesse Prinz from the City University of New York, USA, also spoke on whether consciousness and attention are dissociable.

The conference closed with a free public lecture at the State Library of Queensland by Professor Stanislas Dehaene, an international leader in the field of cognitive neuroscience at the Collège de France.

Super-Resolution Symposium

As part of UQ Microscopy Week 2014, QBI hosted the Super-Resolution Symposium on 4 April.

With speakers from across UQ, the event showcased some of the work being conducted at the University, including seven QBI staff who presented their work: Luke Hammond, Dr Ilan Gobius, Dr Callista Harper, Dr Miriam Matamales, Dr Brent Neumann, Dr Andreas Papadopulos, and Professor Frederic Meunier.

Super-resolution microscopes enable single molecule imaging, which allow the study of individual receptors on synaptic terminals.

The program featured sessions of advanced imaging techniques, live imaging, tissue imaging and presentations on facilities at the University.

QBI’s Advanced Microscopy Facility is home to two of Australia’s most powerful super-resolution microscopes.

The equipment housed in QBI has capabilities to create 3D reconstructions of brain sections and rapidly image neuronal outgrowth and intracellular trafficking.

Ross Maclean Fellowship Race Day

More than 200 guests helped to raise $25,000 for motor neuron disease (MND) research by attending the Ross Maclean Fellowship Caloundra Cup on 28 June.

Held at Corbould Park Racecourse at the Sunshine Coast Turf Club, the day was one of the jewels of the 2014 Queensland Winter Racing Carnival.

MND, a fatal disease with no cure, is being actively fought at QBI, and the vital funds directly helped to support the work.

The event was made possible thanks to a number of generous supporters including Ross Maclean Racing, Shaun Flanigan, Jeff Maclean, the Index Group, Village Roadshow Themeparks, Naomi Kito Baliey, McKinney’s Jewellers, Rumba Resort, Euromarque Maserati Brisbane and Willims Motor Group, The Training Spot Albion and Ricky Gibson, the Australian Wallabies and Treasury Wine Estate.

The Ross Maclean Fellowship was established in 2004 by the late Ross Maclean to raise funds to fight this most devastating disease.

Since that time, his family have been instrumental in carrying on the legacy established by Mr Maclean, and have championed the cause of promoting and raising funds for MND research at QBI.
QBI ANNUAL REPORT 2014

Community Outreach

QBI’s community outreach program engages people with an interest in discovering more about neurological disorders and how the brain functions. The program’s success is proof of the public’s thirst to learn more about the latest research.

The Institute conducts regular tours through its world-class facilities, and the researchers frequently present lectures, talks and discussions that form the core of the community outreach program. This interaction has continually proven beneficial for both the public and scientists.

In 2014 QBI held a number of events designed to celebrate the support that both individuals and community groups have provided for QBI’s research.

Breakfast Series

What causes brain malformation?
Professor Linda Richards and Associate Professor Helen Cooper

The power of attention: how attention filters sensory information which underpins perception, choice and action
Supported by Mind Gardner
Professor Jason Mattingley

Women in business & science: why are there so few women CEOs and Professors in Australia?
Dr Terrance Fitzsimmons, Lecturer and Postdoctoral Research Fellow, UQ Business School
Professor Linda Richards

Motor neuron disease (MND): what is the current state of play?
Professor Naomi Wray, Centre for Neurogenetics and Statistical Genomics (CNSG) at QBI
Dr Rob Henderson, Director of Neurology at the Royal Brisbane and Women’s Hospital

New Fellowships

Stafford Fox Medical Research Fellowship in stroke-induced dementia
The Stafford Fox Medical Research Foundation’s generous support will enable this fellowship for research into vascular dementia. Caused primarily by strokes, vascular dementia accounts for up to 40 per cent of dementias, and consequently is a vital area of research as we seek to address the dementia epidemic.

Scott Sullivan Research Fellowship in motor neuron disease
This fellowship, supported by the MND and Me Foundation and the Royal Brisbane and Women’s Hospital Foundation, will accelerate research output and coordinate preclinical trials for promising new therapies in motor neuron disease research. The Fellow will act as a bridge between the clinic at the Royal Brisbane and Women’s Hospital and QBI.

John Trivett Foundation Senior Research Fellowship in brain cancer
The John Trivett Foundation, newly merged with Cure Brain Cancer Foundation, initiated philanthropic support to consolidate research in brain cancer at UQ. The John Trivett Fellowship will be a joint appointment between QBI and the Institute for Molecular Bioscience at UQ.
The Australian Brain Bee Challenge (ABBC) is a public outreach program for high school students that aims to provide an opportunity to engage young Australians, as well as their families, teachers and the wider community, to learn about neuroscience and neuroscience research.

The ABBC is Australia's only neuroscience competition for high school students and provides opportunities for all Australian students, including those from regional areas, to participate and to consider a career in science, and, in particular, neuroscience.

The ABBC has three rounds, with round one taking place in March during the annual Brain Awareness Week. Round one of the ABBC is an online quiz in which students demonstrate their knowledge and understanding of brain structure, function, anatomy, and their understanding of neurological disease and disorders. 6,000 students completed round one in 2014.

Round two is an ABBC state/territory final hosted by universities or research institutes across Australia. The round two Queensland ABBC final took place at QBI on 22 July and was attended by 200 Year 10 students and teachers, some of whom travelled from as far as Cairns, Weipa and Ingham to participate. During the day the students competed in the competition, toured the facilities at QBI, observed experiments and talked to QBI scientists about their research, discoveries and how they became involved in scientific research as a career. The students and teachers also had the opportunity to hear from Professor Melvyn Goodale, Canada Research Chair in Visual Neuroscience and Director of The Brain and Mind Institute, Western University, Ontario, Canada. After a close individual competition, Somerville House student Sophie Watson was the winning student on the day, becoming the 2014 Queensland ABBC Champion.

Round three is the ABBC National Final, in which each state/territory Champion competes to become the ABBC Champion. The 2014 ABBC National Final will be held in April 2015 at the University of Western Australia.

The ABBC is affiliated with the International Brain Bee (IBB) and each year the Australian Champion has the opportunity to compete in the IBB. The 2013 Queensland and Australian Champion Eva Wang attended the IBB in Washington DC in August 2014 and placed second against competitors from 22 countries. It was an outstanding effort from Eva, who has a keen interest in neuroscience and completed work experience placements at QBI in both 2013 and 2014.

The ABBC has had more than 30,000 students participate in round one over the nine years since it was established in Australia by Professor Linda Richards and QBI. ABBC student alumni have gone on to undertake undergraduate degrees in a wide variety of disciplines. Some have now completed research higher degrees in neuroscience and have worked throughout their studies at QBI. Many state and national winners have also completed work experience in laboratories at QBI. As of January 2015, the national headquarters will move from QBI to the University of Western Sydney. QBI will continue to host round two, the Queensland ABBC Final and to engage high school students in understanding the importance of neuroscience research and learning about neuroscience.
Queensland Brain Institute
Annual Report 2014

QBI houses more than 300 researchers, working across the span of neuroscience to understand the body’s most remarkable organ.

Our researchers are highly regarded, and represent the Institute in a number of pivotal scientific organisations and serve on prestigious editorial boards. The quality of our publications, grants and awards stands QBI in the top echelons of scientific research.

Recognition

Lavinia Codd (Bartlett laboratory) discusses her research with the then Queensland Minister for Science, Information Technology, Innovation and the Arts, The Hon Ian Walker MP.
Alzheimer's disease as well as epilepsy including neurodegenerative conditions such as are caused by defects in vesicular trafficking, which are responsible for neuronal and hormonal communications that are commonly ascribed to vertebrates, including a rudimentary level of consciousness, the honeybee is capable of higher cognitive functions, such as a rudimentary level of consciousness, the study of which and the sensation of pain.

During the course of his three-year study Professor Srinivasan will explore whether the relatively simple nervous system of the honeybee is capable of higher cognitive function, including the ability to detect dysfunction in neurons and other cells. The resultant data will then be used to inform the design of the next generation of polarisation-based aural navigation techniques.

In recognition of “an outstanding contribution by an individual to neuroscience in Australia”, Professor Srinivasan was awarded the Australian Laureate Fellowship to investigate the specialised visual systems of marine creatures from the Great Barrier Reef.

He then applies this information to improve the aerial vehicle design by naming him as one of two recipients of this prestigious national fellowship, making him only the seventh Australian to receive the honour.

In 2014, Professor Thompson was appointed a Fellow of the Institute, in recognition of his contributions to neuroscience, including as a past President of the Australasian Neuroscience Society, making him only the seventh Australian to receive the Honour.

The Goodhill study (Forbes, Thompson, Yaun & Goodhill, Neuron, 2012), which appeared in one of the world’s leading neuroscience journals, describes how axons of nerve cells are guided to their correct brain regions. It is a significant paper published by a member of the laboratory of Professor Geoffrey Goodhill, and the 2014 Paxinos-Watson Prize for the most significant paper published by a member of the laboratory of Professor Geoffrey Goodhill went to Professor Bartlett.

During the course of his three-year study, Professor Srinivasan determined how correct neural circuits form during development. He then applied this information to improve the aerial vehicle design by naming him as one of two recipients of this prestigious national fellowship, making him only the seventh Australian to receive the honour.

The UK-based Royal Institute of Navigation awarded Professor Srinivasan their highest honour, the Harold Spencer-Jones Gold Medal, and have elected him a Fellow of the Institute, in recognition of his contributions to neuroscience, including as a past President of the Australasian Neuroscience Society, making him only the seventh Australian to receive the Honour.

The Goodhill study (Forbes, Thompson, Yaun & Goodhill, Neuron, 2012), which appeared in one of the world’s leading neuroscience journals, describes how axons of nerve cells are guided to their correct brain regions. It is a significant paper published by a member of the laboratory of Professor Geoffrey Goodhill, and the 2014 Paxinos-Watson Prize for the most significant paper published by a member of the laboratory of Professor Geoffrey Goodhill went to Professor Bartlett.

During the course of his three-year study, Professor Srinivasan determined how correct neural circuits form during development. He then applied this information to improve the aerial vehicle design by naming him as one of two recipients of this prestigious national fellowship, making him only the seventh Australian to receive the honour.

The Goodhill study (Forbes, Thompson, Yaun & Goodhill, Neuron, 2012), which appeared in one of the world’s leading neuroscience journals, describes how axons of nerve cells are guided to their correct brain regions. It is a significant paper published by a member of the laboratory of Professor Geoffrey Goodhill, and the 2014 Paxinos-Watson Prize for the most significant paper published by a member of the laboratory of Professor Geoffrey Goodhill went to Professor Bartlett.

During the course of his three-year study, Professor Srinivasan determined how correct neural circuits form during development. He then applied this information to improve the aerial vehicle design by naming him as one of two recipients of this prestigious national fellowship, making him only the seventh Australian to receive the honour.

The Goodhill study (Forbes, Thompson, Yaun & Goodhill, Neuron, 2012), which appeared in one of the world’s leading neuroscience journals, describes how axons of nerve cells are guided to their correct brain regions. It is a significant paper published by a member of the laboratory of Professor Geoffrey Goodhill, and the 2014 Paxinos-Watson Prize for the most significant paper published by a member of the laboratory of Professor Geoffrey Goodhill went to Professor Bartlett.

During the course of his three-year study, Professor Srinivasan determined how correct neural circuits form during development. He then applied this information to improve the aerial vehicle design by naming him as one of two recipients of this prestigious national fellowship, making him only the seventh Australian to receive the honour.

The Goodhill study (Forbes, Thompson, Yaun & Goodhill, Neuron, 2012), which appeared in one of the world’s leading neuroscience journals, describes how axons of nerve cells are guided to their correct brain regions. It is a significant paper published by a member of the laboratory of Professor Geoffrey Goodhill, and the 2014 Paxinos-Watson Prize for the most significant paper published by a member of the laboratory of Professor Geoffrey Goodhill went to Professor Bartlett.
QBI commercialisation activities in 2014 focussed on the business development and maintenance of existing intellectual property, and the business development and protection of new intellectual property (IP) through its relationship with UniQuest. UniQuest is one of Australia’s leading commercialisation companies, specialising in global technology transfer and facilitating access for all business sectors to world-class university expertise and IP.

A new provisional patent was filed for the use of ultrasound methodology to treat neurodegenerative diseases. This IP originated from CJCADR and current activities are focussed on the potential market and development opportunities.

New IP related to a patented therapeutic protein for the treatment of spinal cord injury and MND has been developed, which will provide additional protection for the project. Plans to take the protein into clinical trials are ongoing with support from a successful application for grant funding from Biopharmaceuticals Australia (BPA).

Another patent for a potential treatment for spinal cord injury or neurodegenerative disorders (c29 peptide), based on the discovery of a mechanism for preventing apoptotic cell death, has progressed to in vivo testing. NuNerve Pty Ltd, the QBI spin-out company supported this through an ARC linkage grant that finished in 2014.

Three patents licenced to NuNerve (neural stem cell generation, methods of isolating stem cells, and factors that promote the generation and survival of endogenous neural stem cells for therapeutic benefit in dementia) have continued to be maintained and will be reviewed in 2015.

Other projects with potential commercial value that were progressed in 2014 included a discovery around the use of kinase inhibitors to prevent excess neuroinflammation after stroke and the potential use of GlyR alpha3 modulators for the treatment of chronic pain. Commercial partners are being explored for both projects.

The ARC linkage agreement with QBI researchers continues with Boeing to develop collision avoidance systems. In addition, QBI researchers continue to participate in the Cooperative Research Centre (CRC) for Living with Autism Spectrum Disorders that commenced in 2013, and the Science of Learning Research Centre funded by the Australian Research Council.

Agreements were negotiated in the last period with Euclideon, whereby QBI researchers will collaborate with Euclideon to build new 3D visualisation tools to support brain research.

In 2014, QBI attended and exhibited at BIO2014 in San Diego. BIO is one of the largest international conferences for biotechnology, and QBI and UniQuest held a number of discussions around research and commercial opportunities. QBI also exhibited as part of the Life Science Queensland delegation and looks forward to attending the 2015 event in Philadelphia.

UniQuest will continue to work alongside the Institute’s research teams to pursue any commercial opportunities arising from the researchers. To further support this, UniQuest provides educational support to QBI’s postgraduate and early career researchers about how they can use technology transfer to ensure their research has commercial potential.

One way that this can be achieved is through attending UniQuest’s annual commercialisation workshop which provides researchers with the opportunity to receive expert advice and guidance from professionals working in the pharmaceutical, biotechnology, investment, IP and research sectors.
Publications that were omitted from the 2013 QBI researchers (indicated in bold) contributed

- Ball D, Kliese R, Aggarwal M, Whitehouse AJ & Marshall VM

- Srinivasan, Williams, Hunt A, Edson J & Mori S (2014) Convergence of object focused simul-

- Bell KL, Rangan H, Fowler R, Kull CA, - Benyamin B

- K, Gieger C, Metspalu A, Camaschella C, Toniolo Pramstaller PP, Hicks AA, Ouwehand WH, Oexle P, Bandinelli S, van der Harst P, Uda M, Vollen-

- (2014) Consensus paper: The role of the cerebellum in perceptual pro

- Moulton EA, Paulin MG, Pavlova MA, Schmah-

- 1007/s12311-014-0627-7

- Gabrielli B (2014) Decatenation checkpoint-de-

- 232: 1117-1126

- (2014) The impact of human

- Cerebellum

- & Franz EA (2014) Agency attribution:

- 22: 1117-1126

- 10: e1003473.

- Neurons, 1: 228-236.

- 34: 1932-1941.

- 7: 2.

- Molecular Brain

- 17: 519-528

- American Journal of Medical Genetics Part B:

- Disorders Working Group, Pergadia ML, Heath

- Hickie IB, Montgomery GW, Martin NG & Tabaŕes-Seisdedos R (2014) Inverse and direct

- Neuropsychiatric Genetics

- 83: 89-105.

- Developmentally vitamin

- Burne THJ, Oliver S, Balsara K, Swendsen JN, Edson J & Mori S (2014) The role of the cerebellum in perceptual pro

- Moulton EA, Paulin MG, Pavlova MA, Schmah-

- 1007/s12311-014-0627-7

- Gabrielli B (2014) Decatenation checkpoint-de-

- 232: 1117-1126

- (2014) The impact of human

- Cerebellum

- & Franz EA (2014) Agency attribution:

- 22: 1117-1126

- 10: e1003473.

- Neurons, 1: 228-236.

- 34: 1932-1941.

- 7: 2.

- Molecular Brain

- 17: 519-528

- American Journal of Medical Genetics Part B:

- Disorders Working Group, Pergadia ML, Heath

- Hickie IB, Montgomery GW, Martin NG & Tabaŕes-Seisdedos R (2014) Inverse and direct

- Neuropsychiatric Genetics

- 83: 89-105.

- Developmentally vitamin

- Burne THJ, Oliver S, Balsara K, Swendsen JN, Edson J & Mori S (2014) The role of the cerebellum in perceptual pro

- Moulton EA, Paulin MG, Pavlova MA, Schmah-

- 1007/s12311-014-0627-7

- Gabrielli B (2014) Decatenation checkpoint-de-

- 232: 1117-1126

- (2014) The impact of human

- Cerebellum

- & Franz EA (2014) Agency attribution:

- 22: 1117-1126

- 10: e1003473.

GABAergic double hydroxide nanoparticles for enhanced gene delivery. Applied Clay Science 100: 66-75.

GABAergic double hydroxide nanoparticles for enhanced gene delivery. Applied Clay Science 100: 66-75.

GABAergic double hydroxide nanoparticles for enhanced gene delivery. Applied Clay Science 100: 66-75.

GABAergic double hydroxide nanoparticles for enhanced gene delivery. Applied Clay Science 100: 66-75.

GABAergic double hydroxide nanoparticles for enhanced gene delivery. Applied Clay Science 100: 66-75.

GABAergic double hydroxide nanoparticles for enhanced gene delivery. Applied Clay Science 100: 66-75.

GABAergic double hydroxide nanoparticles for enhanced gene delivery. Applied Clay Science 100: 66-75.

GABAergic double hydroxide nanoparticles for enhanced gene delivery. Applied Clay Science 100: 66-75.

GABAergic double hydroxide nanoparticles for enhanced gene delivery. Applied Clay Science 100: 66-75.

GABAergic double hydroxide nanoparticles for enhanced gene delivery. Applied Clay Science 100: 66-75.

GABAergic double hydroxide nanoparticles for enhanced gene delivery. Applied Clay Science 100: 66-75.

GABAergic double hydroxide nanoparticles for enhanced gene delivery. Applied Clay Science 100: 66-75.
Publications

Heng YH, Zhou B, Harris L, Harvey T, Smith A, Hemani G

Hemani G

Heath AK, Williamson EJ, Ebeling PR, Heap LA, Goh CC, Kassahn KS &

murine SVZ neurogenic niche.

regulates proliferation and migration within the

A, Cato K, Horne E, Martynoga B, Andersen J, Achimastou

replication of epistasis influencing transcription

NG, Metspalu A, Franke L, Montgomery GW, Henders AK,

reply.

crinology and Metabolism

reflect those in plasma.

dried blood spots are reliable and accurately

Eyles DW & English DR (2014) Measurements of

Shakhbazov K

Nature

, Gronostajski RM, Yeo GS, Piper M

Cerebellar output in zebrafish: an analysis of

25-hydroxyvitamin D concentrations in archived

Eyles DW

Nature

99: 3319-3324.

McRae AF &

Bochud P-Y, Barcella M, Dauvilliers Y,

Lammers GJ, Aubert V, Heim MH, Martin NG,

DE, Boerwinkle E, Chambers JC, Fiorito G, Grallert

Russo A, Heid IM, Salvi E, Vendantam S, Arking

W, Bell

JT, Chakravarti A, Kooner JS, Peters A, Matullo

M, Hastie ND, Cusi D, Bochud M, Frayling TM,

lenweider P, Bergmann S, Beckmann JS, Tafti

Hollins SL, Goldie BJ, Carroll AP,

Hoggart CJ, Venturini G, Mangino M, Gomez

Hill WD, Davies G, van de Lagemaat LN, Christo

Loos RJF & Kutalik Z (2014) Novel approach iden

Borecki IB, Rousson V, Hirschhorn JN, Rivolta C,

Metspalu A, Jarvelin M-R, Scherag A, Smith GD,

M, Schramm K, Swerdlow D, Tabak AG, Thorand

Luotola K, Marzi C, Muller C, Peters A, Prokisch

W, Kristiansson K, Langenberg C, Lehtimaki T,

Jula

Nature

1093/cercor/bhu253 [Epub ahead of print]

&

Huang S-C

Nature

537–541.

using DNA methylation sequencing.

Lehrach H, Wechsler-Reya RJ, Eils R, Yaspo ML,

Pietsch T, Rutkowski S, Scheurlen W, Taylor MD,

N, Kleinheinz K, Erkek S, Weber UD, Bartholo

Benyamin

Hughes NJ &

Goodhill GJ

Journal of Experimental Biology

217: 2462-2467.

& Alewood PF (2014) Hydropho-

Hopping G, Wang C-IA, Hogg RC,

Nevin ST

Frontiers in Neural Circuits

7: 53–74.

Huang S-C

Translational Psychiatry

9: e87972

Hopping G, Wang C-IA, Hogg RC,

Nevin ST

Frontiers in Neural Circuits

7: 53–74.

Huang S-C

Translational Psychiatry

9: e87972

Hopping G, Wang C-IA, Hogg RC,

Nevin ST

Frontiers in Neural Circuits

7: 53–74.

Huang S-C

Translational Psychiatry

9: e87972

Hopping G, Wang C-IA, Hogg RC,

Nevin ST

Frontiers in Neural Circuits

7: 53–74.

Huang S-C

Translational Psychiatry

9: e87972

Hopping G, Wang C-IA, Hogg RC,

Nevin ST

Frontiers in Neural Circuits

7: 53–74.

Huang S-C

Translational Psychiatry

9: e87972

Hopping G, Wang C-IA, Hogg RC,

Nevin ST

Frontiers in Neural Circuits

7: 53–74.
Publications

<table>
<thead>
<tr>
<th>Australian Research Council</th>
<th>Belgian Medical Genomics Initiative</th>
<th>Motor Neurone Disease Research Institute of Australia</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alzheimer’s Australia Dementia Research Foundation</td>
<td>Brain Foundation</td>
<td>National Health and Medical Research Council</td>
</tr>
<tr>
<td>Australasian Society for Autism Research</td>
<td>European Commission 7th Framework Programme</td>
<td>National Computational Merit Allocation Scheme</td>
</tr>
<tr>
<td>Australian Government Department of Education</td>
<td>Fondation Leducq</td>
<td>French Embassy</td>
</tr>
<tr>
<td>Australian Government Cooperative Research Centres</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
in 2014], $484,191, 3 years.

Deep sleep genes and determining their roles for preserving cognitive functions, $469,169, 3 years.

Learning and hippocampus: a role in learnt fear? $749,192, 4 years.

Neurodevelopmental changes in inhibitory circuits in the amygdala, $711,868, 3 years.

Neural plasticity in schizophrenia, $1,319,165, 3 years.

Analysis of de novo and inherited exome variation channels, $645,558, 3 years.

TDP-43 in motor neuron disease, $632,562, 3 years.

Cellular repair: molecules and mechanisms, $441,174, 3 years.

Calcium channels in secretory vesicles to the cortical actin network, $580,171, 4 years.
Neuroscience Seminars

Autism spectrum disorder
Genome to phenome: characterising epidemiology to animal models

Translational neuroscience; from space point process models
Deciphering neural information

Ageing and the (dis)organisation of cognitive episodes
A core brain system in assembly

Is the function of APP relevant to disease pathogenesis?
Loss of brain lipid homeostasis as a contributing factor to Alzheimer’s disease: from basic mechanisms to therapeutic strategies

Deep-sea squid (the giant squid) between common reef squid and rare different environments—comparison Complex visual adaptions in squid for the pathogenesis of dementia?

Encoding a global animal state

Structural biology of membrane trafficking in neurodegeneration

MR neuroimaging at 7 Tesla: after early brain insult Neurobehavioral plasticity

The series challenges scientists an opportunity to learn more about the latest scientific developments through the exchange of ideas and leads to future researchers in their thinking, promotes excellence

Through a weekly seminar program, QBI gives neuroscientists an insight into the latest research and advances in neurosciences. The seminar series is open to all, and all are welcome to attend and participate in the discussions.

Seminars are held on a weekly basis, with topics ranging from basic neuroscience to clinical applications, and from animal models to human studies. Each seminar is led by an expert in their field, sharing their latest research and insights.

Recognition

Dr Allen Cheung
Dr Anne Eckert
Professor Andrew Hill

Professor Vicki Anderson
Lavina Codd
Associate Professor Erica Fletcher
Dr Kate Hoy

Associate Professor Markus Barth
Dr Brett Collins
Dr Helen Gooch
Dr Zhitao Hu

Dr J. Bertran-Gonzalez
Dr Wen-Sung Chung
Professor Jürgen Götz
Shao-Chang Huang

Professor Emery Brown
Professor Luciano D’Adamio
Dr Christine Cong Guo
Professor Richard Huganir

Associate Professor Thomas Burne
Dr Mario de Bono
Callista Harper
Georg Kerbler

Associate Professor Charles Claudianos
Dr Anthony Don
Associate Professor Neil Harris
Dr Vikram Khurana

Professor John Duncan
Professor Allan Herbison
Professor Joe Lynch

Regulating neuronal networks with a kiss

TBI: How much can we achieve?

Cortical reorganization after experimental traumatic brain injury and circadian rhythms

Using optogenetics to unravel the amygdala

Using optogenetics to unravel the amygdala
<table>
<thead>
<tr>
<th>Name</th>
<th>Title</th>
<th>Institution</th>
<th>Topic</th>
</tr>
</thead>
<tbody>
<tr>
<td>Professor Jason Mattingley</td>
<td>Associate Professor Jose Polo</td>
<td>Queensland Brain Institute, The University of Queensland</td>
<td>Eye movements and visual stability</td>
</tr>
<tr>
<td>Dr Linda Miller</td>
<td>Dr Simmy Poonian</td>
<td>Children's Medical Research Institute (CMRI)</td>
<td>Isolating the bulk endosome from nerve terminals</td>
</tr>
<tr>
<td>Dr John Morris</td>
<td>Professor Caroline (Lindy) Rae</td>
<td>Queensland Brain Institute, The University of Queensland</td>
<td>The neural basis of the partial reinforcement extinction effect</td>
</tr>
<tr>
<td>Annika Nichols</td>
<td>Dr Tobias Rasse</td>
<td>IMP - Research Institute of Molecular Pathology, Vienna, Austria</td>
<td>Lethargus-quiescence in C. elegans is a systemic brain state under tight control of arousal circuits</td>
</tr>
<tr>
<td>Professor Miguel Nicolelis</td>
<td>Professor Bert Sakmann</td>
<td>Duke University Medical Center, USA</td>
<td>Beyond brain-machine interfaces</td>
</tr>
<tr>
<td>Dr Patricio Opazo</td>
<td>Dr Judith Reinhard</td>
<td>Max Planck Institute for Neurobiology, Germany</td>
<td>The synaptic capture of membrane diffusing AMPA Receptors as a substrate for memory formation and disease</td>
</tr>
<tr>
<td>Dr Michael Piper</td>
<td>Dr Amanda Robinson</td>
<td>School of Biomedical Sciences and Queensland Brain Institute, The University of Queensland</td>
<td>Nuclear factor one transcription factors and cortical development</td>
</tr>
<tr>
<td>Associate Professor Jose Polo</td>
<td>Associate Professor Jennifer Rodger</td>
<td>Queensland Brain Institute, The University of Queensland</td>
<td>Dr Danielle Wilde</td>
</tr>
<tr>
<td>Dr Simmy Poonian</td>
<td>Professor Bert Sakmann</td>
<td>Queensland Brain Institute, The University of Queensland</td>
<td>Rebecca Williams</td>
</tr>
<tr>
<td>Professor Caroline (Lindy) Rae</td>
<td>Dr Vanesa Tomatis</td>
<td>Queensland Brain Institute, The University of Queensland</td>
<td>Professor Daniel Wolpert</td>
</tr>
<tr>
<td>Annika Nichols</td>
<td>Professor Li-Huei Tsai</td>
<td>Queensland Brain Institute, The University of Queensland</td>
<td>Dr Tobias Rasse</td>
</tr>
<tr>
<td>Professor Miguel Nicolelis</td>
<td>Associate Professor Bruno van Swinderen</td>
<td>Queensland Brain Institute, The University of Queensland</td>
<td>Professor Li-Huei Tsai</td>
</tr>
<tr>
<td>Dr Patricio Opazo</td>
<td>Dr Judith Reinhard</td>
<td>Queensland Brain Institute, The University of Queensland</td>
<td>Professor Zhi-Ying Wu</td>
</tr>
<tr>
<td>Dr Michael Piper</td>
<td>Dr Amanda Robinson</td>
<td>Queensland Brain Institute, The University of Queensland</td>
<td>Dr Kaylene Young</td>
</tr>
<tr>
<td>Associate Professor Jose Polo</td>
<td>Associate Professor Jennifer Rodger</td>
<td>Queensland Brain Institute, The University of Queensland</td>
<td>Assistant Professor Helen Zhou</td>
</tr>
<tr>
<td>Roger Pocock</td>
<td>Dr Irina Voineagu</td>
<td>Queensland Brain Institute, The University of Queensland</td>
<td>RECOGNITION 86</td>
</tr>
</tbody>
</table>
Victor Anggono

Thomas Burne

Ross Cunningham

John Kelly

Perry Bartlett

Charles Claudianos

Darryl Eyles

Joe Lynch

Helen Cooper

Geoffrey Goodhill

Jürgen Götz

Massimo Hilliard

Tianzi Jiang

Timothy Bredy

Elizabeth Coulson

Justin Marshall

Jason Mattingley

Recognition
<table>
<thead>
<tr>
<th>Name</th>
<th>Professional Services</th>
</tr>
</thead>
<tbody>
<tr>
<td>John McGrath</td>
<td>• Australian Schizophrenia Research Bank, Access Committee Member</td>
</tr>
<tr>
<td></td>
<td>• ANZ Trustees Queensland Medical Program Review Committee</td>
</tr>
<tr>
<td></td>
<td>• NHMRC Australian Health Ethics Committee Member</td>
</tr>
<tr>
<td></td>
<td>• NHMRC Research Committee Member</td>
</tr>
<tr>
<td></td>
<td>• NHMRC Grant Review Panel Member</td>
</tr>
<tr>
<td></td>
<td>• Orygen Youth Health Research Centre, Research Committee Member</td>
</tr>
<tr>
<td></td>
<td>• Research Australia Board Member</td>
</tr>
<tr>
<td></td>
<td>• Schizophrenia International Research Society, Board Member</td>
</tr>
<tr>
<td></td>
<td>• Schizophrenia Research Forum, Advisory Board Member</td>
</tr>
<tr>
<td>Linda Richards</td>
<td></td>
</tr>
<tr>
<td>Pankaj Sah</td>
<td></td>
</tr>
<tr>
<td>Frederic Meunier</td>
<td></td>
</tr>
<tr>
<td>Bryan Mowry</td>
<td>• Australian Schizophrenia Research Bank: Science Committee Member, Genetics Committee Member</td>
</tr>
<tr>
<td></td>
<td>• Royal Australian and New Zealand College of Psychiatrists, Member, Committee for Research</td>
</tr>
<tr>
<td>Michael Piper</td>
<td></td>
</tr>
<tr>
<td>Judith Reinhard</td>
<td></td>
</tr>
<tr>
<td>Peter Visscher</td>
<td></td>
</tr>
<tr>
<td>Jana Vukovic</td>
<td></td>
</tr>
<tr>
<td>Stephen Williams</td>
<td></td>
</tr>
<tr>
<td>Naomi Wray</td>
<td></td>
</tr>
<tr>
<td>Mandyam Srinivasan</td>
<td></td>
</tr>
<tr>
<td>Huji Xu</td>
<td></td>
</tr>
<tr>
<td>Jian Yang</td>
<td></td>
</tr>
</tbody>
</table>
Perry Bartlett
• Academic Board
• Advancement Sub-Committee
• Anthropology Museum Management Committee
• Centre for Advanced Imaging Advisory Board
• Clem Jones Centre for Ageing Dementia Research Advisory Board
• Health and Medical Research Advancement Board
• University Senior Management Group

Thomas Burne
• Anatomical Biosciences Animal Ethics Committee, Chair

Jake Carroll
• Research Computing Centre, high performance computing architecture panel SME

Helen Cooper
• Institutional Biosafety Committee
• Master of Neuroscience Program Coordinator
• MPhil in Neuroscience Coordinator

Elizabeth Coulson
• Small Animal MRI Committee Member

Darryl Eyles
• Centre for Advanced Imaging Small Animal Imaging Committee, Vice-Chair

Jürgen Götz
• Animal Users’ Committee

Massimo Hilliard

John Kelly

Marie Mangelsdorf

Frederic Meunier

Linda Richards

Pankaj Sah

Stephen Williams

Elizabeth Coulson

Darryl Eyles

Jürgen Götz
Victor Anggono

Charles Claudianos

Massimo Hilliard

Jason Mattingley

Perry Bartlett

Helen Cooper

Tianzi Jiang

John McGrath

Timothy Bredy

Elizabeth Coulson

Joe Lynch

Frederic Meunier

Thomas Burne

Ross Cunnington

Darryl Eyles

Justin Marshall

Bryan Mowry

Allen Cheung

Geoffrey Goodhill
<table>
<thead>
<tr>
<th>Director</th>
<th>Faculty</th>
</tr>
</thead>
<tbody>
<tr>
<td>Deputy Director (Research)</td>
<td></td>
</tr>
<tr>
<td>Deputy Director (Operations)</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>The University of Queensland Affiliates</th>
<th>Adjunct Appointments</th>
<th>Conjoint Appointments</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Emeritus Professors</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Honorary Professors</td>
<td></td>
</tr>
</tbody>
</table>

| Honorary Researchers | |
Postdoctoral Fellows

- Dr Eleonora Autuori
- Dr Lilach Avitan
- Dr Corinne Bareham
- Dr Oliver Baumann
- Dr Jeff Bednark
- Dr Beben Benyamin
- Dr Daniel Blackmore
- Dr Liviu Bodea
- Dr Marie-Jo Brion
- Dr Jens Bunt
- Dr Enda Byrne
- Dr Guo-Bo Chen
- Dr Wen-Sung Chung
- Dr Sean Coakley
- Dr Luca Cocchi
- Dr Alexandre Cristino
- Dr Xiaoying Cui
- Dr Simon De Croft
- Dr Argel Estrada
- Dr Richard Faville
- Dr Javed Fowdar
- Dr Yakir Gagnon
- Dr Marta Garrido
- Dr Rosina Giordano-Santini
- Dr Ilan Gobius
- Dr J Bertran Gonzalez
- Dr Jake Gratten
- Dr Callista Harper
- Dr Robert Hatch
- Dr Robbie Islam
- Dr Dhanisha Jhaveri
- Dr Marc Kamke
- Dr Angelo Keramidas
- Dr Benjamin Kottler
- Dr Peter Kozulin
- Dr Vanessa Lanoue
- Dr Aoife Larkin
- Dr Hong Lee
- Dr Yi-Hsin Lee
- Dr Chuanzhou Li
- Dr Yonghui Li
- Dr Jing Lu
- Dr Wei Luan
- Dr Allen McRae
- Dr Roger Marek
- Dr Sally Martin
- Dr Dusan Matusica
- Dr Ellen Meelkop
- Dr Divya Mehta
- Gerhard Moser
- Dr Ramesh Narayanan
- Dr Brent Neumann
- Dr Tam Nguyen
- Dr Christopher Nolan
- Dr Conor O'Leary
- Dr Kathie Overeem
- Dr Rebecca Nisbet
- Dr Andreas Papadopulos
- Dr Juan Polanco
- Dr Joseph Powell
- Dr Zlatko Pujic
- Dr Lei Qian
- Dr Margaretha Ridder
- Dr Amanda Robinson
- Dr Matthew Robinson
- Dr Phillip Robinson
- Dr Martin Sale
- Dr Miriam Sanchez Matamales
- Dr Ingo Schiffner
- Dr Sonia Shah
- Dr Konstantin Shakhbazov
- Dr Benjamin Sivyer
- Dr Peter Stratton
- Dr Cornelia Strobel
- Dr Rodrigo Suarez
- Dr Robert Sullivan
- Dr Chanel Taylor
- Dr Vanessa Tomatis
- Dr Fabrice Turpin
- Dr Anna Vinkhuyzen
- Dr Jana Vukovic
- Dr Qian Wang
- Dr Tong (Iris) Wang
- Dr Wei Wei
- Dr Jocelyn Widagdo
- Dr Nicole Wilson
- Dr Francois Windels
- Dr Qiongyi Zhao
- Dr Yanqiong Zhou
- Dr Zhihong Zhu

Research Officers

- Christine Dixon
- Helen Gooch
- Dr Yu Chau
- Luke Lloyd-Jones
- John Morris
- Samuel Nayler

Research Assistants

- Suzanne Alexander
- Kathy Asmussen
- Andrea Baker
- Andrew Bakshi
- Dr Arne Brombas
- Tim Butler
- Marie Camara
- Yu Chau
- Ming-Yu Chen
- Nadia Cummins
- Linda Cumner
- Dr Angela Dean
- Cheryl Filippich
- Javed Fowdar
- Alan Goldizen
- Rachel Gormal
- Julia Groening
- Nivetha Gunasekaran
- Justine Haddrill
- Amy Heffernan
- Anjali Henders
- Alexander Holloway
- Peter Josh
- Diana Kleine
- Michael Knight
- Pauline Ko
- Benjamin Lewis
- Chang Liu
- David Lloyd
- Andrew Martin
- Jessica McFadyen
- Zoie Nolt
- Abbey Nydam
- Imogen O'Keefe
- Kelsey Palghat
- Tishila Palliyaguru
- Kalpana Patel
- Thomas Pollak
- Vikram Ratnu
- Fiona Ritchie
- Gregory Robinson
- Elise Rowe
- Bree Rumballe
- Petra Sedlak
- Henry Simila
- Zala Skrbis
- Peter Smart
- Heather Smith
- Dean Soccol
- Biao Sun
- Saul Thurrowgood
- Thuy Truong
- Hong Diem Vo
- Mirela Wagner
- Amanda White
- Li Xu
- Zong Zhang
<table>
<thead>
<tr>
<th>Research Higher Degree Students</th>
<th>Master of Neuroscience Students</th>
</tr>
</thead>
<tbody>
<tr>
<td>Asad Ali</td>
<td></td>
</tr>
<tr>
<td>Gonzalo Almarza</td>
<td></td>
</tr>
<tr>
<td>Joon Yong An</td>
<td></td>
</tr>
<tr>
<td>Adekunle Bademosi</td>
<td></td>
</tr>
<tr>
<td>Samuel Baker</td>
<td></td>
</tr>
<tr>
<td>Siân Baker</td>
<td></td>
</tr>
<tr>
<td>Danay Baker-Andresen</td>
<td></td>
</tr>
<tr>
<td>Madhusoothanan Bhagavathi Perumal</td>
<td></td>
</tr>
<tr>
<td>Brendan Bicknell</td>
<td></td>
</tr>
<tr>
<td>Stephanie Biergans</td>
<td></td>
</tr>
<tr>
<td>Anna Bode</td>
<td></td>
</tr>
<tr>
<td>Zoran Boskovic</td>
<td></td>
</tr>
<tr>
<td>Megan Campbell</td>
<td></td>
</tr>
<tr>
<td>Ye Jin Chai</td>
<td></td>
</tr>
<tr>
<td>Justin Chaplin</td>
<td></td>
</tr>
<tr>
<td>Kok Siong Chen</td>
<td></td>
</tr>
<tr>
<td>Wen-Sung Chung</td>
<td></td>
</tr>
<tr>
<td>Sean Coakley</td>
<td></td>
</tr>
<tr>
<td>Lavinia Codd</td>
<td></td>
</tr>
<tr>
<td>Nadia Cummins</td>
<td></td>
</tr>
<tr>
<td>Aymeric Denuelle</td>
<td></td>
</tr>
<tr>
<td>Daina Dickins</td>
<td></td>
</tr>
<tr>
<td>Alessandra Donato</td>
<td></td>
</tr>
<tr>
<td>Christine Dixon</td>
<td></td>
</tr>
<tr>
<td>Philip Dyer</td>
<td></td>
</tr>
<tr>
<td>Ilvana Dzafic</td>
<td></td>
</tr>
<tr>
<td>Laura Fenlon</td>
<td></td>
</tr>
<tr>
<td>Lee Fletcher</td>
<td></td>
</tr>
<tr>
<td>Helen Gooch</td>
<td></td>
</tr>
<tr>
<td>Natalie Groves</td>
<td></td>
</tr>
<tr>
<td>Veronika Halasz</td>
<td></td>
</tr>
<tr>
<td>Anthony Harris</td>
<td></td>
</tr>
<tr>
<td>Callista Harper</td>
<td></td>
</tr>
<tr>
<td>Luke Hearn</td>
<td></td>
</tr>
<tr>
<td>Jayani Hewage</td>
<td></td>
</tr>
<tr>
<td>Shao-chang Huang</td>
<td></td>
</tr>
<tr>
<td>Nicholas Hughes</td>
<td></td>
</tr>
<tr>
<td>Sarah Hunt</td>
<td></td>
</tr>
<tr>
<td>Sharifun Islam</td>
<td></td>
</tr>
<tr>
<td>Oscar Jacoby</td>
<td></td>
</tr>
<tr>
<td>Se Eun Jang</td>
<td></td>
</tr>
<tr>
<td>Ravi Kiran Kasula</td>
<td></td>
</tr>
<tr>
<td>Georg Kerbler</td>
<td></td>
</tr>
<tr>
<td>Leonie Kirszenblat</td>
<td></td>
</tr>
<tr>
<td>Elizabeth Kita</td>
<td></td>
</tr>
<tr>
<td>Michael Langford</td>
<td></td>
</tr>
<tr>
<td>Natalie Lee</td>
<td></td>
</tr>
<tr>
<td>Emilia Lefevre</td>
<td></td>
</tr>
<tr>
<td>Gerhard Leinenga</td>
<td></td>
</tr>
<tr>
<td>Xiang Li</td>
<td></td>
</tr>
<tr>
<td>Tong Lin</td>
<td></td>
</tr>
<tr>
<td>Cirong Liu</td>
<td></td>
</tr>
<tr>
<td>Martin Luhrmann</td>
<td></td>
</tr>
<tr>
<td>Anne Maallo</td>
<td></td>
</tr>
<tr>
<td>Robert Maier</td>
<td></td>
</tr>
<tr>
<td>Andrew Martin</td>
<td></td>
</tr>
<tr>
<td>Aung Aung Kywe Moe</td>
<td></td>
</tr>
<tr>
<td>John Morris</td>
<td></td>
</tr>
<tr>
<td>Vinod Narayana</td>
<td></td>
</tr>
<tr>
<td>Thai Vinh Nguyen</td>
<td></td>
</tr>
<tr>
<td>Hung Thanh Nguyen</td>
<td></td>
</tr>
<tr>
<td>Morgane Nouvian</td>
<td></td>
</tr>
<tr>
<td>David Painter</td>
<td></td>
</tr>
<tr>
<td>Loc Duyen Pham</td>
<td></td>
</tr>
<tr>
<td>Genevieve Phillips</td>
<td></td>
</tr>
<tr>
<td>Simandeep Poonian</td>
<td></td>
</tr>
<tr>
<td>Chikako Ragan</td>
<td></td>
</tr>
<tr>
<td>Vikram Ratnu</td>
<td></td>
</tr>
<tr>
<td>Natalie Rens</td>
<td></td>
</tr>
<tr>
<td>Amanda Robinson</td>
<td></td>
</tr>
<tr>
<td>Michelle Sanchez Vega</td>
<td></td>
</tr>
<tr>
<td>Suzanne Scott</td>
<td></td>
</tr>
<tr>
<td>Aanchal Sharma</td>
<td></td>
</tr>
<tr>
<td>Chase Sherwell</td>
<td></td>
</tr>
<tr>
<td>Ming Soh</td>
<td></td>
</tr>
<tr>
<td>Paola Spadaro</td>
<td></td>
</tr>
<tr>
<td>Ashvin Srinivasan</td>
<td></td>
</tr>
<tr>
<td>Reuben Strydom</td>
<td></td>
</tr>
<tr>
<td>Yajie Sun</td>
<td></td>
</tr>
<tr>
<td>Chia-Hsuan Sung</td>
<td></td>
</tr>
<tr>
<td>Sahil Talwar</td>
<td></td>
</tr>
<tr>
<td>Gavin Taylor</td>
<td></td>
</tr>
<tr>
<td>Rachel Templin</td>
<td></td>
</tr>
<tr>
<td>Hanne Thoen</td>
<td></td>
</tr>
<tr>
<td>Vanesa Tomatis</td>
<td></td>
</tr>
<tr>
<td>Susan Travis</td>
<td></td>
</tr>
<tr>
<td>Michael Troup</td>
<td></td>
</tr>
<tr>
<td>Marion Turnbull</td>
<td></td>
</tr>
<tr>
<td>Karly Turner</td>
<td></td>
</tr>
<tr>
<td>Michelle Watts</td>
<td></td>
</tr>
<tr>
<td>Sarah Williams</td>
<td></td>
</tr>
<tr>
<td>Lisa Wittenhagen</td>
<td></td>
</tr>
<tr>
<td>Tong Wu</td>
<td></td>
</tr>
<tr>
<td>Di Xia</td>
<td></td>
</tr>
<tr>
<td>Shanzhi Yan</td>
<td></td>
</tr>
<tr>
<td>Yuanhao Yang</td>
<td></td>
</tr>
<tr>
<td>Xianfeng Yang</td>
<td></td>
</tr>
<tr>
<td>Hon Wai Yap</td>
<td></td>
</tr>
<tr>
<td>Oressia Zalucki</td>
<td></td>
</tr>
<tr>
<td>Yan Zhang</td>
<td></td>
</tr>
<tr>
<td>Jing Zhao</td>
<td></td>
</tr>
<tr>
<td>Xiaoqing Zhou</td>
<td></td>
</tr>
<tr>
<td>Oressia Zalucki</td>
<td></td>
</tr>
<tr>
<td>Yan Zhang</td>
<td></td>
</tr>
<tr>
<td>Jing Zhao</td>
<td></td>
</tr>
<tr>
<td>Xiaoqing Zhou</td>
<td></td>
</tr>
<tr>
<td>Oressia Zalucki</td>
<td></td>
</tr>
<tr>
<td>Yan Zhang</td>
<td></td>
</tr>
<tr>
<td>Jing Zhao</td>
<td></td>
</tr>
<tr>
<td>Xiaoqing Zhou</td>
<td></td>
</tr>
<tr>
<td>Role</td>
<td>Name</td>
</tr>
<tr>
<td>---</td>
<td>-------------------------------</td>
</tr>
<tr>
<td>Institute Manager</td>
<td>Helen Weir</td>
</tr>
<tr>
<td>Grants, Ethics and Publications Manager</td>
<td>Sylvie Pichelin</td>
</tr>
<tr>
<td>Senior Research Manager</td>
<td>Rowan Tweedale</td>
</tr>
<tr>
<td>Research Legal and Commercialisation</td>
<td>Dr. Latha Kancherla</td>
</tr>
<tr>
<td>Advancement, Communications and Graphics Director</td>
<td>Mikaeli Costello</td>
</tr>
<tr>
<td>Executive Office Manager</td>
<td>Alison van Niekerk</td>
</tr>
<tr>
<td>Information Technology Manager</td>
<td>Jake Carroll</td>
</tr>
<tr>
<td>Human Resources Manager</td>
<td>Samantha Dyson</td>
</tr>
<tr>
<td>Scientific Services Manager</td>
<td>Clare Seaman</td>
</tr>
<tr>
<td>Laboratory Support</td>
<td>John Baisden</td>
</tr>
<tr>
<td>Science of Learning Research Centre Chief Operating Officer</td>
<td>Annita Nugent</td>
</tr>
<tr>
<td>Occupational Health and Safety</td>
<td>Ross Dixon</td>
</tr>
<tr>
<td>Postgraduate Student Administration Manager</td>
<td>Janet Voight</td>
</tr>
<tr>
<td>Technical Services Manager</td>
<td>David Wheeldon</td>
</tr>
<tr>
<td>Finance Manager</td>
<td>Katherine Parsonage</td>
</tr>
<tr>
<td>Administrative Support</td>
<td>Reeza Palamoodu Nazer</td>
</tr>
<tr>
<td>Finance Analysis and Planning Manager</td>
<td>Virginia Nink</td>
</tr>
<tr>
<td>Occupational Health and Safety</td>
<td>Janette Zlamal</td>
</tr>
<tr>
<td>Postgraduate Student Administration</td>
<td>Trista de Bois</td>
</tr>
<tr>
<td>Technical Services Manager</td>
<td>Michael Perren</td>
</tr>
<tr>
<td>Human Resources Manager</td>
<td>Brooke Ellem</td>
</tr>
<tr>
<td>Information Technology Manager</td>
<td>Chris Fletcher</td>
</tr>
<tr>
<td>Technical Services Manager</td>
<td>Esmeli Quevedo Baquero</td>
</tr>
<tr>
<td>Finance Manager</td>
<td>Anthony McRae</td>
</tr>
<tr>
<td>Administrative Support</td>
<td>Dee McGrath</td>
</tr>
<tr>
<td>Information Technology Manager</td>
<td>Perry Kollmorgen</td>
</tr>
<tr>
<td>Technical Services Manager</td>
<td>Jesse Read</td>
</tr>
<tr>
<td>Finance Manager</td>
<td>Michael Simpson</td>
</tr>
<tr>
<td>Administrative Support</td>
<td>Niki Gagliano</td>
</tr>
<tr>
<td>Information Technology Manager</td>
<td>Ipek Porebski</td>
</tr>
<tr>
<td>Technical Services Manager</td>
<td>Esmeli Quevedo Baquero</td>
</tr>
<tr>
<td>Finance Manager</td>
<td>Michael Perren</td>
</tr>
<tr>
<td>Administrative Support</td>
<td>Esmeli Quevedo Baquero</td>
</tr>
<tr>
<td>Information Technology Manager</td>
<td>Perry Kollmorgen</td>
</tr>
<tr>
<td>Technical Services Manager</td>
<td>Jesse Read</td>
</tr>
<tr>
<td>Finance Manager</td>
<td>Michael Simpson</td>
</tr>
<tr>
<td>Administrative Support</td>
<td>Niki Gagliano</td>
</tr>
<tr>
<td>Information Technology Manager</td>
<td>Ipek Porebski</td>
</tr>
<tr>
<td>Technical Services Manager</td>
<td>Jesse Read</td>
</tr>
<tr>
<td>Finance Manager</td>
<td>Michael Perren</td>
</tr>
<tr>
<td>Administrative Support</td>
<td>Esmeli Quevedo Baquero</td>
</tr>
<tr>
<td>Information Technology Manager</td>
<td>Perry Kollmorgen</td>
</tr>
<tr>
<td>Technical Services Manager</td>
<td>Jesse Read</td>
</tr>
<tr>
<td>Finance Manager</td>
<td>Michael Simpson</td>
</tr>
<tr>
<td>Administrative Support</td>
<td>Niki Gagliano</td>
</tr>
<tr>
<td>Information Technology Manager</td>
<td>Ipek Porebski</td>
</tr>
<tr>
<td>Technical Services Manager</td>
<td>Jesse Read</td>
</tr>
<tr>
<td>Finance Manager</td>
<td>Michael Perren</td>
</tr>
<tr>
<td>Administrative Support</td>
<td>Esmeli Quevedo Baquero</td>
</tr>
<tr>
<td>Information Technology Manager</td>
<td>Perry Kollmorgen</td>
</tr>
<tr>
<td>Technical Services Manager</td>
<td>Jesse Read</td>
</tr>
<tr>
<td>Finance Manager</td>
<td>Michael Simpson</td>
</tr>
<tr>
<td>Administrative Support</td>
<td>Niki Gagliano</td>
</tr>
<tr>
<td>Information Technology Manager</td>
<td>Ipek Porebski</td>
</tr>
<tr>
<td>Technical Services Manager</td>
<td>Jesse Read</td>
</tr>
<tr>
<td>Finance Manager</td>
<td>Michael Perren</td>
</tr>
</tbody>
</table>
Researchers at QBI are dedicated to unlocking the mysteries of neurodegenerative diseases and mental health disorders, which currently account for a staggering 45 per cent of the burden of disease in Australia.

By improving the understanding of the fundamental mechanisms that regulate brain function, QBI researchers are working to develop new, more effective therapeutic treatments for conditions such as dementia, stroke, motor neuron disease, multiple sclerosis and neurotrauma.

QBI relies on both public and private donations to continue its research programs and is therefore grateful for the support and generosity of its benefactors.

All members of QBI sincerely thank our valued donors for their support in 2014.

How to support QBI:

- **Donations**
 - Make a donation for a specific research area
 - Purchase scientific equipment
 - Fund scholarships for talented students
 - Provide fellowships for early/mid-career researchers
 - Sponsor Professorial Chairs
 - Undertake laboratory dedications
 - Provide gifts in memoriam
 - Fundraise using the community fundraising platform Everyday Hero

- **Bequests**
 - By leaving a bequest to QBI in your will, you are leaving a lasting legacy that accelerates current research and preserves future projects. Bequests can include:
 - A percentage of an estate
 - The residuary of an estate (what remains after all other gifts and costs have been deducted)
 - A gift of a specific sum of money
 - A particular asset, such as property, works of art, shares, or an insurance policy

Donor Organisations

- HopgoodGanim Lawyers
- Southern Districts Rugby Union Football Club Inc
- Nicol Foundation
- Maclean Distributors Pty Ltd
- Stage Five P/L ATF Stage Five Trust
- Siemon Investments Pty Ltd
- Sunshine Coast Turf Club Inc.
- Frazer Family Foundation Pty Ltd
- Cooper Reeves Pty Ltd
- The Wilgarning Trust
- Maclean Sales Pty Ltd
- ANZ Trustees Limited
- Alan Tran Medical Pty Ltd
- Ozprop Holdings Pty Ltd
- Aero Products Pty Ltd
- Hunter Hall International Limited
- Coolphase Pty Ltd
- UBS
- Priority Building
- Alexandra Hills State High School
- Great South East Developments Pty Ltd
- Moggill State School
- Goodman Foundation
- Mercedes-Benz Club of the ACT Inc
- University of Queensland Union
- Child’s Play Consultancy Services
- Colourcraft Ink
- RD Williams Machinery Pty Ltd
- Jandet Pty Ltd
- AECOM Australia Pty Ltd
- Estate First Lawyers
- LIB (187) Pty Limited
- ITF Clarke Family Trust
- Shantbell Pty Ltd
- Liam J Tansey Pty Ltd
- The Clem Jones Foundation

Major Donors

- The Stafford Fox Medical Research Foundation
- Estate of Dr Clem Jones AO
- The University of Queensland Endowment Fund Pty Ltd
- Robert Brice, Graeme Wood and John Wylie
- Hand Heart Pocket Board of Benevolence
- John T Reid Charitable Trusts
- Rohil Pty Ltd
- Robyn Hilton
- Dalio Foundation
- Index Group of Companies
- The Maclean Family
- G James Australia Pty Ltd
- Lewis Saragossi and Pearle Saragossi
- The MND and Me Foundation Limited
- Frank & Patsy Youngleson
- The Helpful Foundation
- Jeff & Fran Maclean
- Crommelin Family Foundation
- Tim & Elaine Crommelin
- Pogliane Investments Pty Ltd
- The Siganto Family

Under current legislation, gifts to the Queensland Brain Institute are tax deductible.

To discuss how you can support the Institute, please contact us at:

Queensland Brain Institute
Building 79, St Lucia Campus
The University of Queensland
Brisbane QLD 4072
Telephone: +61 7 3346 6413
Facsimile: +61 7 3346 6301
Email: development@qbi.uq.edu.au
Website: www.qbi.uq.edu.au
Individual Donors

Barbara Cochrane
Valma Clarkson
Ron Clarkson
Bob Christiansen
Vanessa Charlston
Esme Charlson
Gary Carter
Con Carides
Daniel Capper
Tracy Campbell
Ian Cameron
Peter Cairns
Tim Butler
Timothy Butler
Joan Bryan AO
Iain Bruce
Attracta Brownlee
Kim Broadfoot
Andrew Brice AM
Jennifer Brennan
Charles Brabazon QC
Bruce Blaikie
Stuart Blacket
Alan Bennett
Pauline Beames
Sam Bassett
Dick Barnett
Anne Bachelard
Socrates Aronis
Timothy Armstrong
Beverley Angus
Susan Andersen
Christopher Allan
David Allan
Bruce Frank
Sean Frampton
Alex Foxton
David Forgan-Smith
Roscoe Foreman
Sue Foote
Ian Florence
Shaun Flanigan
Robert Fitchew
Paul Figallo
Robyn Farrell
Robyn Fandrich
Dale Fandrich
Julie Elliott
Jon Edwards*
Janette Edson*
Fiona Draney
Karl Dodd
Mary Denver
Lynette Davis
Tammy Dahler
William Curnow AM
Margaret Curnow
Anne Cullinan
Mary Cross
G Crosier
Tim Crommelin
Christine Cowell
Jeanette Covacevich AM PSM
Marion Coulson
John Coulson
Tim Cottee
Blake Cornish
Michael Cooper
Anthony Cooper
Garry Collins
Gillian Colasimone
Rosemary Kajewski
Neville Kajewski
Bill Johnston
Noyce Hurst
Tony Humphrys
Leonard Humphreys
Lyle Humphreys
Stewart Howson
Glenn Howell
Beth Howard
Tracey Hopkins
Mark Holmes
Mary Hilton
Anne Hilton
Robyn Hilton
Gregory Henricks
Alan Hastie
Troy Harry
Gerowyn Hanson
Robert Hammond
Eileen Hall
Patricia Haggard
Jean Gustafson
Ross Grimley
Don Grimley
Ronald Grice
T Green
Kath Grealy
Lynette Gray-Moffatt
Fran Gray
Noella Grant
Elizabeth Gordon
Barbara Gilmore
Colleen Gibbons
Elizabeth Garrett
Malcolm Garrett
Elizabeth Frith
Sincere thanks also to our donors who prefer to remain anonymous.
Janice Marshall
Jo Marjason
Ken Madsen
Daphne Maclean
Hilda Maclean
Fran Maclean
Jeffrey Maclean
Pam Maclean
Craig Maclean
Thomas Mackay
Terriann MacDonnell
Jim MacDonnell
Bob MacDonnell
Mary Lyons*
Richard Lynch
Chris Lonergan
Keith Locke
Anne Little
Max Lennox
Joan Lawrence AM
Shirley Larsen
Tracey Larkin
Samantha Langton
Nikki Langton
Peter Landy
B Lanagan
Sandra Lacey
Steve Knight
Stephen Klein
Wayne King
Paul King
Gil Kerr
Alistair Kennedy
Steve Kempe
Janice Kefford
Raymond Soderholm
John Siemon
Stuart Sharry
Melinda Seccombe
Kelly Schweida
Graham Schrodter
Geoffrey Sattler
Pearle Saragossi
Dina Saragossi
Rosie Russell
Jason Rose
Sue Roberton
Brent Roberton
David Ritchie
Charles Riley
Shirley Richter
Colin Richardson
John Reid AO
John Redman
Robyn Rachow
Guy Quarterman
Tina Previtera
David Pradella
Glenda Powell
Eva Popper
David Pook
Robert Phillips
Leah Perry
Chris Perez-Compton
Mario Pennisi
Stuart Pegg AM
Deborah Peard
Graham Paul
Jaikisan Patel
Michael Palmer
Marie O’Neill
Marcia McInnes
Juliann McEvoy
John McEvoy
Michelle May
Qiongyi Zhao
Patsy Youngleson
Elizabeth Yates
John Wylie AM
Louie Wyatt
Ewan Wu
Janet Wright
Peter Woodward
Graeme Wood AM
Matthew Wissemann*
Natalie Willson
Margaret Williams
Clive Williams
Irene Willett
Dorothea Wilkinson
Cameron Wenck
M Watt
Mary Ware
Brendan Ward
B Vorbach
Hannah Van Niekerk
Jorgen van Seters
Susan Vail
Douglas Turner
Thelma Turnbull
Jenny Tsang
Tony Toohey
David Thompson
Beverley Stewart
Kevin Stewart
Barry Stevenson
Diana Steenberg
Craig Stanley