1 A note on sampling density

When we acquire images using a microscope and store these in a computer, we are using the technique of “sampling”, that is, we are converting an analog signal (continuous in time or space) into digital form (discrete steps) [1, 2]. Ideally, when acquiring images, one should aim for a sampling density that satisfies the Nyquist criterion: there must be two samples for every structure one wishes to resolve [3].

Scientific Volume Imaging have a Nyquist calculator online [4]. To use the calculator, choose the appropriate microscope type, the numerical aperture of the imaging objective, the excitation and emission wavelengths, the number of excitation photons (1 for wide-field fluorescence, laser-scanning confocal and spinning disk confocal; 2 for two-photon microscopy), and the refractive index of the immersion medium. For example, for images of the Alexa 488 channel acquired on the Yokogawa spinning disk confocal microscope using the 63x/1.4 NA oil-immersion objective, the parameters should be what are shown in Fig. 1a. Click “Calculate”. The calculator then shows the results and for this particular example, a sampling rate of 43 nm is required in the lateral (X and Y) direction and 130 nm in the axial (Z) direction (Fig. 1b). The sampling rate in X and Y is a function of the optics in the light path and the relay optics in front of the detectors and therefore is fixed, but the sampling rate in Z is user-defined.

![Nyquist rate and PSF calculator](image1)

(a) Microscope parameters for the Nyquist calculator.

![Calculator results](image2)

(b) Calculator results.

Figure 1: Scientific Volume Imaging’s Nyquist calculator.
We have compiled tables of optimal and actual sampling rates for the Diskovery (Table 1; note 50-µm and 100-µm pinholes) and Yokogawa (Table 2) spinning disk confocal microscopes, and for the LSM 510 and 710 confocal laser-scanning microscopes (Table 3). The backprojected pinhole radii and pinhole spacing are required in the deconvolution step (please refer to the succeeding sections).

Table 1: Diskovery spinning disk confocal microscope deconvolution parameters, 50-µm and 100-µm pinholes. For images with ∼10,000–20,000 grey levels, start with an SNR value of 40 and check the deconvolution result for noise and artefacts (please refer to the succeeding discussion of the deconvolution process). Lower-intensity images would require lower SNR values. ***Please keep your settings consistent if you wish to compare labelling intensity.***

<table>
<thead>
<tr>
<th>Objective</th>
<th>N.A.</th>
<th>Actual XY (nm)</th>
<th>Optimal XY (nm)</th>
<th>Standard Z (nm)</th>
<th>Optimal Z (nm)</th>
<th>Backprojected pinhole radius, 50-µm pinholes (nm)</th>
<th>Pinhole spacing, 50-µm pinholes (µm)</th>
<th>Backprojected pinhole radius, 100-µm pinholes (nm)</th>
<th>Pinhole spacing, 100-µm pinholes (µm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>10x</td>
<td>0.45</td>
<td>559.6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>20x</td>
<td>0.75</td>
<td>276.3</td>
<td>76</td>
<td>1200-800</td>
<td>300</td>
<td>1125</td>
<td>13.23</td>
<td>2421</td>
<td>26.07</td>
</tr>
<tr>
<td>40xW</td>
<td>1.15</td>
<td>140.2</td>
<td>50</td>
<td>1000-400</td>
<td>186</td>
<td>562.5</td>
<td>6.615</td>
<td></td>
<td></td>
</tr>
<tr>
<td>60xW</td>
<td>1.27</td>
<td>93.7</td>
<td>50</td>
<td>600-300</td>
<td>133</td>
<td>375</td>
<td>4.42</td>
<td>831.5</td>
<td>8.872</td>
</tr>
<tr>
<td>60x oil</td>
<td>1.4</td>
<td>93.4</td>
<td>43</td>
<td>400-200</td>
<td>130</td>
<td>375</td>
<td>4.42</td>
<td>831.5</td>
<td>8.872</td>
</tr>
<tr>
<td>60x oil TIRF</td>
<td>1.49</td>
<td>93.7</td>
<td>40</td>
<td>300-200</td>
<td>98</td>
<td>375</td>
<td>4.42</td>
<td>831.5</td>
<td>8.872</td>
</tr>
<tr>
<td>100x oil</td>
<td>1.45</td>
<td>56.03</td>
<td>42</td>
<td></td>
<td>113</td>
<td>225</td>
<td>2.652</td>
<td>479</td>
<td>5.287</td>
</tr>
</tbody>
</table>

Table 2: Yokogawa spinning disk confocal microscope deconvolution parameters. Please follow the same guidelines as those discussed for the Diskovery spinning disk confocal.

<table>
<thead>
<tr>
<th>Objective</th>
<th>N.A.</th>
<th>Actual XY (nm)</th>
<th>Optimal XY (nm)</th>
<th>Standard Z (nm)</th>
<th>Optimal Z (nm)</th>
<th>Backprojected pinhole radius (nm)</th>
<th>Pinhole spacing (µm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>10x</td>
<td>0.45</td>
<td>625</td>
<td>135</td>
<td>3000</td>
<td>1140</td>
<td>2500</td>
<td>50</td>
</tr>
<tr>
<td>20x</td>
<td>0.8</td>
<td>313</td>
<td>76</td>
<td>1200-800</td>
<td>305</td>
<td>1250</td>
<td>30</td>
</tr>
<tr>
<td>40xW</td>
<td>1.2</td>
<td>156</td>
<td>50</td>
<td>1000-400</td>
<td>163</td>
<td>625</td>
<td>15</td>
</tr>
<tr>
<td>63xW</td>
<td>1.2</td>
<td>99</td>
<td>50</td>
<td>600-300</td>
<td>163</td>
<td>416.7</td>
<td>8.33</td>
</tr>
<tr>
<td>63x oil</td>
<td>1.4</td>
<td>99</td>
<td>43</td>
<td>400-200</td>
<td>130</td>
<td>416.7</td>
<td>8.33</td>
</tr>
<tr>
<td>100x oil</td>
<td>1.4</td>
<td>63</td>
<td>41</td>
<td>400-200</td>
<td>130</td>
<td>250</td>
<td>5</td>
</tr>
</tbody>
</table>
Table 3: LSM 510 and 710 laser-scanning confocal microscope deconvolution parameters. When imaging with a pinhole diameter of 1 Airy disk unit, lateral sampling distances may be up to 1.6× that of the recommended Nyquist criteria without significantly compromising image quality. When small pinhole diameters are used (< 0.5 Airy disk units), these may be up to 1.3× larger; when using large pinhole diameters (> 4 Airy disk units), these may be up to 2× larger. An SNR value of 15-20 is typical for laser-scanning confocal. For images with ~10,000–20,000 grey levels, start with an SNR of 20 and check the result for noise or artefacts. Lower-intensity images would require lower SNR values.

<table>
<thead>
<tr>
<th>Objective</th>
<th>N.A.</th>
<th>Actual XY (nm)</th>
<th>Optimal XY (nm)</th>
<th>Standard Z (nm)</th>
<th>Optimal Z (nm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>10x</td>
<td>0.45</td>
<td>600-400</td>
<td>135</td>
<td>3000</td>
<td>1140</td>
</tr>
<tr>
<td>20x</td>
<td>0.8</td>
<td>300-200</td>
<td>76</td>
<td>1200-800</td>
<td>305</td>
</tr>
<tr>
<td>32xW</td>
<td>0.85</td>
<td>200-100</td>
<td>71</td>
<td>900-600</td>
<td>257</td>
</tr>
<tr>
<td>40xW</td>
<td>1.2</td>
<td>200-100</td>
<td>50</td>
<td>1000-400</td>
<td>163</td>
</tr>
<tr>
<td>63xW</td>
<td>1.2</td>
<td>100-50</td>
<td>50</td>
<td>600-300</td>
<td>163</td>
</tr>
<tr>
<td>63x oil</td>
<td>1.4</td>
<td>100-50</td>
<td>43</td>
<td>400-200</td>
<td>130</td>
</tr>
</tbody>
</table>
2 Connecting via XFast/MATE (VirtualGL)

1. XFast is a lightweight desktop environment that incorporates a display manager and a window manager and allows access to a remote graphics hardware [5]. The MATE Desktop Environment, the continuation of GNOME 2, which featured a simple desktop where users can interact with virtual objects [6], provides an intuitive desktop environment for Linux and other Unix-like operating systems and is actively developed to support new technologies [7]. VirtualGL is an open source toolkit that gives any Linux or Unix remote display software the ability to run OpenGL applications with full hardware acceleration, virtualising GPU hardware and allowing GPUs to be shared among multiple users, making it possible for large 3D workstations to be replaced with laptops and, more importantly, eliminating the workstation and the network as barriers to data size [8].

We will use XFast and MATE (VirtualGL) to connect remotely to QBI’s deconvolution server, visnode1, using a laptop or PC, making the PC a terminal that interacts with visnode1 and forwards the display from visnode1 to the PC.

2. Open a web browser and go to https://visnode1.hpc.net.uq.edu.au:3443 and log on using your UQ credentials (Fig. 2a). Click Launch Session > MATE (Virtual GL) > Launch (Fig. 2b).

![XFast login prompt.](image)

(a) XFast login prompt.

![Launching a MATE (VirtualGL) session.](image)

(b) Launching a MATE (VirtualGL) session.

Figure 2: Launching a MATE (VirtualGL) session using XFast.
3. This launches the MATE (VirtualGL) desktop (Fig. 3a). In Settings, Image Quality, Frame Rate and other properties can be tweaked, especially if working on a VPN. To create a shortcut to Huygens Professional, right-click on the desktop and choose “Create Launcher” (Fig. 3b). Give the launcher a name, for example, “Huygens Pro,” and in the “Command” field, type in “/usr/local/bin/huygenspro” (Fig. 3c).

![MATE (VirtualGL) desktop environment.](image)

![Creating a launcher.](image)

![Launcher parameters.](image)

Figure 3: MATE (VirtualGL) desktop and creating a shortcut to Huygens Professional.
4. For copying data to and from the cluster, we recommend using FileZilla, a free cross-platform File Transfer Protocol (FTP) application. Download FileZilla from https://filezilla-project.org/download.php and install.

5. When running FileZilla for the first time, go to File > Site Manager. Click “New Site”. In the “General” tab, type in “visnode1.hpc.net.uq.edu.au” for “Host”, choose “SFTP - SSH File Transfer Protocol” for “Protocol” and “Ask for password” for “Logon Type” (Fig. 4a). Click “Connect”. Log on using your UQ credentials (Fig. 4b). Once logged on, FileZilla will show a Local site (Fig. 4c) and a Remote site (Fig. 4c). The local site can be any location: a local drive or a network drive (for example, group_microscopy) as long as it has been mapped. For the remote site, go to /afm01/scratch/qbi/your_username. You can then point Huygens Professional to this location to open files to be deconvolved, and save outputs.

![FileZilla Site Manager](image1.png)
![Password prompt](image2.png)
![FileZilla local site](image3.png)
![Remote site](image4.png)

Figure 4: The FileZilla user interface.
6. Upload your raw datasets to your /afm01/scratch/qbi folder. Sub-folders can be created if required. To upload, right-click on the file and click “Upload”, or drag and drop.

7. Go back to the MATE (VirtualGL) desktop environment and double-click on your recently-created Huygens Professional Launcher. This launches Huygens Professional (Fig. 5).

Figure 5: Launching the Huygens Professional graphical user interface on a MATE (VirtualGL) desktop.
8. Open your raw dataset by going to File > Open. If the dataset is multi-channel, or is a mosaic or a time series, Huygens Professional will automatically recognise this (Fig. 6a). Click on “Load selection” to open all of the dataset. When prompted for the target data type, choose “To float (default in silent mode)” (Fig. 6b). Huygens will prompt “Please check all image parameters ... ” (Fig. 6c), click “OK”, as defining the acquisition parameters will be the next step.

(a) Opening a file series.

(b) Target data type.

(c) Check image parameters.

Figure 6: Opening a dataset in Huygens Professional.
9. The dataset is now opened in Huygens Professional. To edit the acquisition parameters, click on the “Edit microscope parameters” icon. For each channel, choose the appropriate microscope type and give the correct values for the backprojected pinhole radius, excitation and emission wavelengths, number of photons used for excitation, pinhole spacing, sampling intervals in X, Y and Z (in nm/pixel), objective numerical aperture, and lens immersion and embedding medium (Fig. 7a). Refer to Tables 1–3 for these values. Click on “Set all verified”. At this point, one can then click “Save” to save these parameters for use later on with similar datasets, or for running Huygens Professional in batch mode. Click “Accept”. The colours for the channels will now be updated to what they should be (Fig. 7b).

(a) Editing microscope parameters.

(b) Colours update after microscope parameters are edited.

Figure 7: The Huygens Professional graphical user interface.
10. With your dataset ticked, click on “Decon” (represented by a wand icon). This will open the deconvolution wizard (Fig. 8). Click “Enter wizard”.

Figure 8: The deconvolution wizard.
11. Inside the wizard, choose a measured PSF file for the specific objective used when the image was acquired (Fig. 9a). Measured PSF files can be obtained from \group\microscopy\Templates for Huygens Deconvolution\Measured PSF files. Click next (green arrow). Define a crop window if required by launching the cropper (Fig. 9b), or skip cropping by clicking next. Select the first channel to be deconvolved. For the histogram, choose “Logarithmic” for “Vertical mapping function” and click “Compute”. This brings up a histogram of the current channel, which can be checked for clipped voxels and for the black level (Fig. 9c). Click next.

(a) Loading a measured PSF file.
(b) Window for launching the cropper.
(c) Inspecting the image histogram.

Figure 9: Deconvolution wizard preprocessing steps: PSF selection, cropping, and inspecting the histogram.
12. Determine the image background either manually by making the cursor hover on a background feature and reading the gray level on the display, or automatically by clicking “Auto” (Fig. 10a). The wizard will then show the background value it will use for the deconvolution. Click “Accept”.

The last step is the deconvolution setup. Choose a maximum number of iterations (the default is 40), a quality threshold (a threshold of “0.1” requires a 10 % improvement between iterations), and a value for the signal to noise ratio (Fig. 10b).

A note on the signal to noise ratio:
The signal to noise ratio (SNR) is used in Huygens Professional as a parameter that controls the sharpness of the restoration, that is, the higher the SNR value used, the sharper the result [11]. However, using a value that is too high may result in the noise being enhanced and artefacts being generated. On the other hand, using an SNR value that is too low may lead to real structures being considered as noise and the result may be too smooth and lacking in details.

The SNR value can be estimated by getting the square root of the number of electrons measured by the detector in the brightest voxel of the image [12]. Incoming photons excite electrons in the detector which are then measured by the electronics hardware within. The number of electrons is defined as the intensity value (measured in grey levels or ADU – analog to digital units) multiplied by the conversion factor of the camera (given in e/ADU or ADU$^{-1}$). For example, the Diskovery spinning disk confocal microscope uses two Andor Zyla 4.2 sCMOS cameras, which have a black level of ~ 100 and a conversion factor of 0.45 e/ADU [13]. This means that if the brightest voxel in an image acquired using these cameras have $\sim 2,000$ grey levels, the estimated SNR would be:

\[
SNR = \sqrt{N_{\text{electrons, max}}} = \sqrt{(\text{maximum intensity} - \text{black level}) \times \text{conversion factor}} = \sqrt{(2,000 - 100) \text{ ADU} \times 0.45 \text{ ADU}^{-1}} = 29.2
\]

Therefore one could use an SNR value of 29, but it is always best to check the deconvolution result in order to determine what SNR value is optimal. Imaging specialists from Scientific Volume Imaging often advise using an SNR of 20 even though a calculated SNR estimate yields a higher value. The following values can be a good starting point:

- Noise-free wide-field image: SNR ~ 50
- Spinning disk confocal image: SNR $\sim 20–30$
- Confocal (laser-scanned) image: SNR $\sim 15-20$

After settling on a value for the SNR, choose “Optimized” for “Iteration mode” and “Auto” for “Brick layout”. Click “Deconvolve”. This begins the deconvolution run.

![Deconvolution Guide](QBI Microscopy Facility)

![Figure 10: Background estimation and deconvolution parameters.](image)
13. Once the wizard finishes deconvolving the first channel, click “Resume” to resume the iterations starting from the current result, “Restart channel” to run the deconvolution again using different background settings, or “Accept, to next channel” to accept the result and proceed to the next channel. Repeat the steps above for the next channel, and so on.

After all the channels have been deconvolved (Fig. 11), select “All done”. Click “Save template” to save the same deconvolution parameters to use on similarly-acquired datasets, or for running in batch mode. Click “Done”. To save the result, click on it and go to File > Save as, then choose “TIFF 16 bit”. When prompted for how many files to save the z-stacks to, choose “One per channel”. Choose the target directory and click “OK”. When prompted for the conversion mode (from 32-bit float to 16-bit TIFF), choose “Linked scale”. The deconvolved dataset will now be saved in the cluster, and can be retrieved using FileZilla.

Figure 11: Raw multi-channel dataset (left) and deconvolution result (right).
3 Old Windows instructions [*PuTTY and Xming still work*]

1. When we connect to QBI’s deconvolution server using a PC, we are essentially making the PC a terminal, that is, it interacts with the server using the X Window System, forwarding the display from the server to the PC [9, 10]. For this link to work, we use the PuTTY terminal emulator and the Xming X Window client. Download PuTTY from https://www.chiark.greenend.org.uk/~sgtatham/putty/ and Xming from https://sourceforge.net/projects/xming/ and install them by following the prompts.

2. After installing Xming, run XLaunch and confirm that the settings are the same as in Fig. 12.

![XLaunch settings](image)

(a) XLaunch display settings.

![Session type](image)

(b) Session type.

![Additional parameters](image)

(c) Additional parameters.

![Finish configuration](image)

(d) Finish configuration.

Figure 12: XLaunch settings.
3. Run PuTTY and for the category “Session”, type in “visnode1.hpc.net.uq.edu.au” for “Host Name” and “22” for “Port” (Fig. 13a). For the category Connection > SSH, click on X11 and tick “Enable X11 forwarding” and type in “localhost:0.0” for “X display location” (Fig. 13b). Go back to Session, type in “visnode1” under “Saved Sessions” and click Save. This will save the configuration for visnode1.

4. For copying data to and from the cluster, we recommend using FileZilla, a free cross-platform File Transfer Protocol (FTP) application. Download FileZilla from https://filezilla-project.org/download.php and install. Follow the XFast/MATE (VirtualGL) instructions (Sec. 2) with regards to setting up and using FileZilla.

(a) PuTTY session configuration.
(b) X11 forwarding.

Figure 13: PuTTY configuration settings.
5. Run Xming. Nothing happens visually but it will now be running in the background.

6. Run PuTTY. Launch the terminal by clicking on inode2, “Load”, and then “Open”. Log on using the credentials given by QBI IT. Once logged on, run Huygens Professional by typing `/usr/local/bin/huygenspro` (Fig. 14). Follow the XFast/MATE (VirtualGL) instructions with regards to opening datasets, editing the microscope parameters and the deconvolution process.

![PuTTY terminal log on](image.png)

Figure 14: PuTTY terminal log on.
4 Old Mac OS X instructions [*Terminal and XQuartz still work*]

1. When we connect to QBI’s deconvolution server using a Mac, we are making it a terminal, that is, we make it interact with the server, forwarding the display from the server to the Mac. The Mac is able to do this by using XQuartz. The XQuartz project is an open-source initiative to develop a version of the X Window System that will run on OS X [14]. Download XQuartz from https://www.xquartz.org/ and install by following the prompts.

2. For copying data to and from the cluster, we recommend using FileZilla, a free cross-platform File Transfer Protocol (FTP) application. Download FileZilla for Mac OS X from https://filezilla-project.org/download.php?platform=osx and install. Follow the XFast/MATE (VirtualGL) instructions with regards to setting up and using FileZilla.

3. To log on to the cluster, open terminal by going to Applications > Utilities > Terminal (Fig. 15a). Type in `ssh -Y your_username@visnode1.hpc.net.uq.edu.au` and enter the password given by QBI IT. Once logged on, type in `/usr/local/bin/huygenspro`. This opens the Huygens Professional OS X graphical user interface (Fig. 15b). Follow the XFast/MATE (VirtualGL) instructions with regards to opening datasets, editing the microscope parameters and the deconvolution process.

Figure 15: Logging on to the cluster and launching Huygens Professional on Mac OS X.
Acknowledgments

The QBI Microscopy Facility is grateful to Dr Angelo Tedoldi (Sah Lab) for the use of his dataset for screen captures, and to Dr Vincent Schoonwoert (Scientific Volume Imaging) for helpful comments on the manuscript. We thank Mr Jake Carroll and Mr Irek Porebski (QBI IT) for their support and active development of QBI and UQ's supercomputing infrastructure.

References

