Huygens Professional and Core on HPC Bunya Guide

R. Amor

QBI Advanced Microscopy Facility Queensland Brain Institute, The University of Queensland Research Lane, St Lucia, 4072 QLD, AUSTRALIA <r.amor@uq.edu.au>

December 13, 2024

Abstract

A brief guide on how to use Huygens Professional and Core on HPC Bunya, including running Huygens Core by submitting a job to the Simple Linux Utility for Resource Management (SLURM) scheduler.

Preamble

This is HPC Bunya: https://rcc.uq.edu.au/systems/high-performance-computing/bunya.

If you haven't done so already, apply for a Bunya account here:

https://services.qriscloud.org.au/services/request/new/ee6def64259741a095c1fed20743e3fb. Copy questions 2) - 8) into the "Request details" box on the form and provide details for each item. Incomplete applications will be rejected and applicants will be required to fill in a new form.

Bunya training is available here: https://rcc.uq.edu.au/training-support/training-courses. Register via email to rcc-support@uq.edu.au to attend UQ-only training sessions.

Read the Bunya user guide here: https://github.com/UQ-RCC/hpc-docs/blob/main/guides/Bunya-User-Guide.md and the Bunya OnDemand guide here: https://github.com/UQ-RCC/hpc-docs/blob/main/guides/OnDemand-Guide.md.

You can then request access to Huygens Professional and Core on HPC Bunya using this link: https://services.qriscloud.org.au/access/6211d1e3482544b2b73fc85156446e2c/member.

Running Huygens Professional and Core via OnDemand

- 1. Go to the OnDemand site: https://bunya-ondemand.rcc.uq.edu.au/
- 2. Navigate to Interactive Apps > GPU-Accelerated Desktop. Give the job a name, choose your Bunya account group, and specify the number of GPUs, CPU cores per task, number of tasks, and maximum running time. Click "Launch."
- 3. OnDemand will prompt: "Please be patient as your job currently sits in queue. The wait time depends on the number of cores as well as time requested." Click "Launch GPU-Accelerated Desktop" when the desktop is running (Fig. 1).

GPU-Accelerated Desktop (10459880)	1 node 24 cores Running
Host: >_ bun081	S Delete
Created at: 2024-09-03 13:41:07 AEST	
Time Remaining: 57 minutes	
Session ID: e3752235-586b-480f-b899-8bf1de7e720a	
Compression	Image Quality
0 (low) to 9 (high)	0 (low) to 9 (high)
Launch GPU-Accelerated Desktop	View Only (Share-able Link)

Figure 1: HPC Bunya OnDemand GPU-accelerated desktop running.

4. On the visualisation desktop, open a MATE terminal by navigating to Applications > System Tools > MATE Terminal and type: module load huygens

huygenspro (Fig. 2).

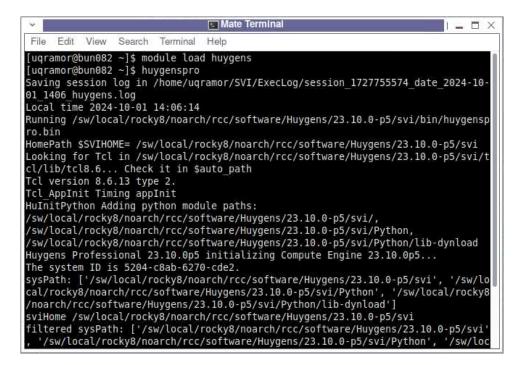


Figure 2: Running Huygens Professional via the MATE terminal.

5. This launches the Huygens Professional graphical user interface (GUI, Fig. 3).

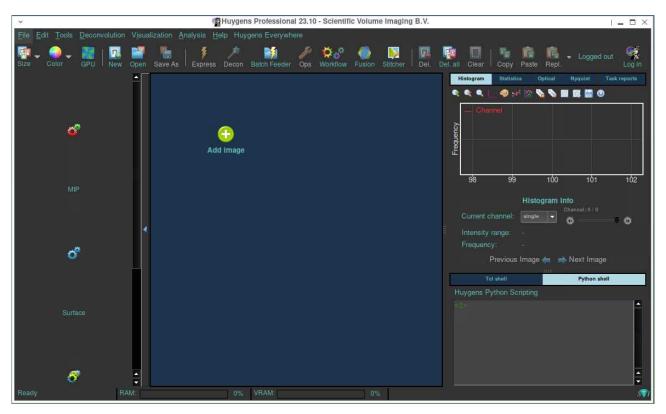


Figure 3: The Huygens Professional GUI.

Call Microscopic Parameters - sh_wtsox6_60hda25_tdtom_h2a647_orf1p488_w5_60x_p								
General parameters	Channel parameters	Image properties						
Sampling intervals:	Select channel:	sh_wtsox6_6ohda25_tdtom_h2a647_orf1p488_w5_60x_p						
✓ X (nm) 102.69	0: Spinning disk - A647 Confocal	Dimensions: 2048×2048×11×1 Channels: 4 (stacked)						
V (nm) 102.69		Data type: 16 bit unsigned integer Size: 352.0 MiB						
√ Z (nm) 680.0								
T (s)	Vicroscope type	Templätes: Save						
	Multi photon	Reports:						
Optical parameters:	Channel label A647 Confocal	Mar Alexandra far bree Mar Vicense Alexandra						
Vumerical aperture 1.400	Backprojected pinhole (nm) 375	The 2 sampling is FAR too large.						
Refractive indexes:	Excitation wavelength (nm) 640	Please consult the Nygulal consultator for optimal sampling intervals.						
✓ Lens immersion Oil → 1.515	Emission wavelength (nm) 665	The image is severely undersampled, visit the image Accessing to learn more.						
✓ Embedding med. Mowiol ▼ 1.490	Spinning disk parameters:							
Advanced:	Spinning Disk (all channels):							
Objective quality Good	✓ Pinhole spacing (µm) 4.42							
Coverslip w.r.t. the data:								
✓ Coverslip position (μm)								
Jimaging direction								
Help	✓ All parameters verified Set all verified	Revert Cancel Accept						

6. Open an image and create a microscope template as normal (Fig. 4).

Figure 4: Creating a microscope template.

7. Do a deconvolution run using the wizard and save the deconvolution template as normal (Fig. 5).

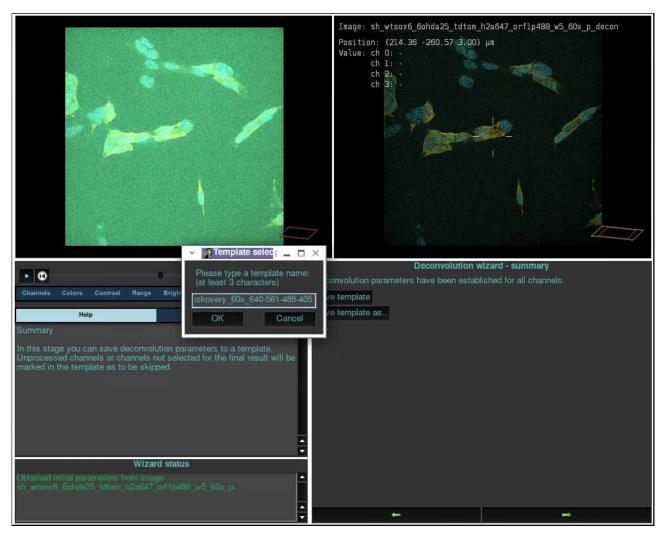


Figure 5: Saving a deconvolution template.

8. Open the Workflow Processor and create a batch job, specifying the input images or folder, the microscope template, deconvolution template, and output file format and directory (Fig. 6).

¥ EHuyg	ens Workflow Processor -> Workflow Designer
Workflow presets: Custom - Drag and D	Drop tasks from the row of available tasks to the Workflow tasks to add them to the workflow.
	Crossfalk Consection Difficult: Z Stabilize time traines
Drag and drop 1	Scruit for more
Workflow tasks: Verified:	
	Options for saving If you want to change either the saving folder or datatype saved as for this
Your todo fist: 1: Edit and verify save location	workflow you can do that here. Otherwise the Workflow Processor uses the default folder and datatype. If you want to change those defaults do so in the Huygens Workflow Processor window.
2: Send to Workflow Processor,	Overwrite Workflow Processor saving:
	Save folder: 📑 (scratch/user/ugramor/C
	Save as type: ICS2 image format +
	Keep result image:
	Save thumbnail:
	Save a Z mip:
	Save X and Y mip:
	Save image statistics:
	Save workflow template:
	Verify and next
	Close Send to Processor Send and close
Ready	station (1997)

Figure 6: Creating a batch job on the Workflow Processor.

9. Save the batch template (.hgsb file, Fig. 7). You will use this template file to run batch jobs with Huygens Core, on the visualisation desktop and on SLURM.

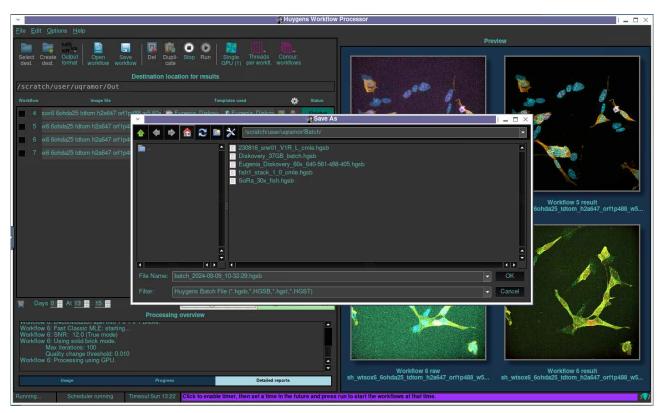


Figure 7: Saving a batch template.

10. Run Huygens Core by opening a new terminal and typing: module load huygens hucore -template ''batch_template_location''

for example,

```
hucore -template ''/scratch/user/uqramor/Batch/Eugenia_Diskovery_60x_640-561-488-405.hgsb''
(Fig. 8).
```

Huygens Core will then run the batch job and save the outputs in the directory specified on the batch template.

×	🖬 Mate Terminal 👔 👘 🔀
File	e Edit View Search Terminal Help
[uq	ramor@bun082 ~]\$ module load huygens ramor@bun082 ~]\$ hucore -template "/scratch/user/uqramor/Batch/Eugenia_Diskov _60x_640-561-488-405.hgsb"
01_	ing session log in /home/uqramor/SVI/ExecLog/session_1727756186_date_2024-10- 1416_huygens.log al time 2024-10-01 14:16:26
	ning /sw/local/rocky8/noarch/rcc/software/Huygens/23.10.0-p5/svi/bin/hucore.b
Looi cl/	ePath \$SVIHOME= /sw/local/rocky8/noarch/rcc/software/Huygens/23.10.0-p5/svi king for Tcl in /sw/local/rocky8/noarch/rcc/software/Huygens/23.10.0-p5/svi/t lib/tcl8.6 Check it in \$auto_path
Tcl	version 8.6.13 type 2. AppInit Timing appInit nitPython Adding python module paths:
SW/	/local/rocky8/noarch/rcc/software/Huygens/23.10.0-p5/svi/, /local/rocky8/noarch/rcc/software/Huygens/23.10.0-p5/svi/Python,
Huy	/local/rocky8/noarch/rcc/software/Huygens/23.10.0-p5/svi/Python/lib-dynload gens Core 23.10.0p5 initializing Compute Engine 23.10.0p5 system ID is 5204-c8ab-6270-cde2.
Che	cking floating license with server. This may take a few moments. Path: ['/sw/local/rocky8/noarch/rcc/software/Huygens/23.10.0-p5/svi', '/sw/lo
cal, /no	/rocky8/noarch/rcc/software/Huygens/23.10.0-p5/svi/Python', '/sw/local/rocky8 arch/rcc/software/Huygens/23.10.0-p5/svi/Python/lib-dynload']
svi	Home /sw/local/rocky8/noarch/rcc/software/Huygens/23.10.0-p5/svi

Figure 8: Running Huygens Core via OnDemand.

Huygens SLURM on Bunya

1. On your machine, open a terminal window. Log on to Bunya by typing: ssh USERID@bunya.rcc.uq.edu.au

Enter your UQ password. Go through the Duo authentication prompts. You will then be logged on to Bunya (Fig. 9).

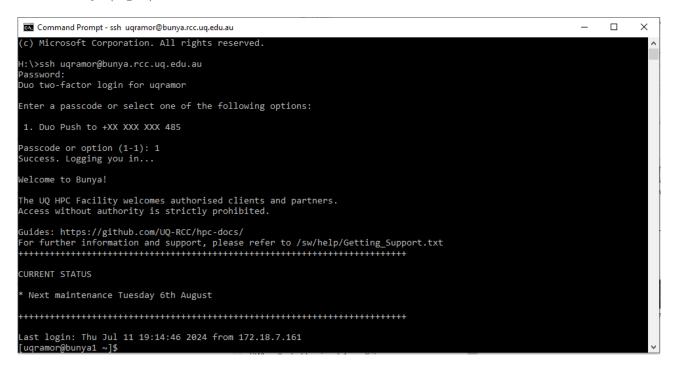


Figure 9: Connecting to Bunya via ssh on a terminal window.

2. By default, you will be on the /home directory. Print the current working directory:\$ pwd

(Note: "\$" indicates a command line and is not part of the command.)

UQ RCC requires that all jobs are called from the /scratch directory. Change to your /scratch directory:

\$ cd /scratch/user/USERID (Fig. 10).



Figure 10: Printing the current working directory and changing to the scratch directory.

3. Create a script to submit your job to the SLURM scheduler. Use vi, or a similar editor. Give the script a name, and use .sh as the extension (Fig. 11).

Watch QCIF's quick overview of vi here: https://www.youtube.com/watch?v=TuR9d9Z_Fis

Figure 11: An example script to submit a Huygens Core job to SLURM.

A short description of the lines on the script follows. The Bunya User Guide has more information.

#!/bin/bash -1

 \rightarrow We are using BASH (the Bourne Again SHell), a shell program and command language for Linux. The -1 command makes the shell a login shell.

The SBATCH commands are for allocating resources: **#SBATCH** --nodes=1 \rightarrow number of nodes

#SBATCH --ntasks-per-node=1 \rightarrow 1 for single- and multi-thread jobs

#SBATCH --cpus-per-task=24 \rightarrow number of threads

#SBATCH --mem=16G \rightarrow RAM per job in MB, GB, TB; see the Bunya guide

- **#SBATCH** --job-name=HUCORE \rightarrow the name you give your job
- **#SBATCH** --time=01:00:00 \rightarrow time the job needs to complete; max=168 hrs for gpu_cuda
- **#SBATCH** $--qos=gpu \rightarrow$ the Quality of Service name; see the QoS guide

#SBATCH --partition=gpu_cuda \rightarrow you are using the GPU partition

#SBATCH --constraint=cuda48gb \rightarrow the GPU RAM specified, in aiming to use a particular GPU; for an A100 MIG slice, use "--constraint=cuda10gb", for H100 and A100, use "--constraint=cuda80gb", or "--constraint=cuda48gb"

 $\texttt{\#SBATCH} \text{ --gres=gpu:} 1 \rightarrow \mathrm{GPU} \ \mathrm{number}$

 $\#SBATCH --account=a_qbi_microscopy \rightarrow your accounting group$

The next two lines launch Huygens Core for batch runs: module load huygens \rightarrow launches the Huygens module

hucore -template ''.hgsb batch file'' \rightarrow launches Huygens Core and runs the batch job as specified in the template

4. Submit the job to SLURM:\$ sbatch SCRIPT_FILENAME

uqramor@bunya1 uqramor]\$ sbatch hucore2.sh submitted batch job 10002720

Figure 12: Submitting the job to SLURM.

5. Check the status in the job queue:

\$ squeue --me

[uqramor@bunya1 uqramor]\$ squeueme				
JOBID PARTITION NAME	USER ST	TIME	NODES	NODELIST(REASON)
11014598 gpu_cuda HUCORE	uqramor PD	0:00	1	(Priority)
11013736 gpu_viz Viz_Desk	uqramor R	45:39	1	bun082
11013730 gpu_viz Viz_Desk	uqramor R	45:56	1	bun122
[uaramor@hunva1_uaramor]\$				

Figure 13: Checking the status in the queue.

6. Monitor the job by using the tail command.\$ tail -f slurm-JOBID.out

To exit the tail command, press Ctrl + C.

```
[uqramor@bunya1 uqramor]$ tail -f slurm-11014598.out
z dim: 1.000
Doing task imgSave...
Scaling mode while saving: -cmode scale
Scaling mode while saving: -cmode scale
Saving image using command: sh_wtsox6_6ohda25_tdtom_h2a647_orf1p488_w5_60x_p003_cmle__9_ save {/scratch/user/uqramor/Out
/sh_wtsox6_6ohda25_tdtom_h2a647_orf1p488_w5_60x_p003_cmle_(9).ics} -type ics2 -cmode scale
Successfully saved results to: {/scratch/user/uqramor/Out/sh_wtsox6_6ohda25_tdtom_h2a647_orf1p488_w5_60x_p003_cmle_(9).i
cs}
Template /scratch/user/uqramor/Batch/Eugenia_Diskovery_60x_640-561-488-405.hgsb successfully processed
Tcl_AppInit App init time 209.50
Local time 2024-10-01 15:12:27
```

Figure 14: Monitoring the job.

7. When the job is done, use scp (secure copy) to transfer individual files to your RDM collection:
\$ scp FILENAME USERID@bunya.rcc.uq.edu.au:/RDM_FILE_PATH

Command Prompt - ssh uqramor@bunya.rcc.uq.edu.au				-		\times
Collaborate hucore2.sh Out	slurm-9772222.out	slurm-9843961.out	slurm-9978485.0	out		^
ıqramor@bunya1 uqramor]\$ cd Out						
ıqramor@bunya1 Out]\$ ls head -15						
heduler_client0.log						
:heduler_client1.log						
n_wtsox6_6ohda25_tdtom_h2a647_orf1p488_w5_	_60x_p001_cmle_(0).hgsb					
n_wtsox6_6ohda25_tdtom_h2a647_orf1p488_w5_						
1_wtsox6_6ohda25_tdtom_h2a647_orf1p488_w5_						
1_wtsox6_6ohda25_tdtom_h2a647_orf1p488_w5_						
n_wtsox6_6ohda25_tdtom_h2a647_orf1p488_w5_						
1_wtsox6_6ohda25_tdtom_h2a647_orf1p488_w5_						
n_wtsox6_6ohda25_tdtom_h2a647_orf1p488_w5_						
n_wtsox6_6ohda25_tdtom_h2a647_orf1p488_w5_						
n_wtsox6_6ohda25_tdtom_h2a647_orf1p488_w5_						
1_wtsox6_6ohda25_tdtom_h2a647_orf1p488_w5_						
1_wtsox6_6ohda25_tdtom_h2a647_orf1p488_w5_						
1_wtsox6_6ohda25_tdtom_h2a647_orf1p488_w5_	_60x_p001_cmle.ics					
1_wtsox6_6ohda25_tdtom_h2a647_orf1p488_w5_						
ıqramor@bunya1 Out]\$ scp sh_wtsox6_6ohda25	5_tdtom_h2a647_orf1p488	_w5_60x_p001_cmle.id	s uqramor@bunya.	rcc.uq.ed	u.au:/Q	RI
lata/Q1141/_Rumelo/Huygens/Bunya/Out						
assword:						
io two-factor login for uqramor						
ter a passcode or select one of the follo	owing options:					
. Duo Push to +XX XXX XXX 485						
asscode or option (1-1): 1						
_wtsox6_6ohda25_tdtom_h2a647_orf1p488_w5_	_60x_p001_cmle.ics		100% 704MB 57	.7MB/s	00:12	
Iqramor@bunya1 Out]\$						

Figure 15: Transferring a file using scp.

or copy the whole output directory:

\$ scp -r OUTPUT_DIRECTORY USERID@bunya.rcc.uq.edu.au:/RDM_FILE_PATH

Command Prompt - ssh uqramor@bunya.rcc.uq.edu.au			-	- 🗆
qramor@bunya1 uqramor]\$ scp -r /scratch/user/uqramor/Out uqramor@bunya.rcd	c.uq.edu.au:/QRI	Sdata/Q	1141/_Rume	lo/Huygens
nya				
ssword:				
o two-factor login for uqramor				
ter a passcode or select one of the following options:				
. Duo Push to +XX XXX XXX 485				
sscode or option (1-1): 1				
_wtsox6_6ohda25_tdtom_h2a647_orf1p488_w5_60x_p002_cmle_(0).hgsb	100%	26KB	5.1MB/s	00:00
_wtsox6_6ohda25_tdtom_h2a647_orf1p488_w5_60x_p002_cmle.ics	100%	704MB	63.8MB/s	00:11
5k-2-24Jun21-13_11_16.log	100%	51KB	9.6MB/s	00:00
k-2-24Jun25-14_16_28.log	100%	62KB	13.3MB/s	00:00
k-1-24Jul11-15_45_00.log	100%	62KB	14.5MB/s	00:00
wtsox6_6ohda25_tdtom_h2a647_orf1p488_w5_60x_p_cmle_(4).hgsb	100%	26KB	7.5MB/s	00:00
_wtsox6_6ohda25_tdtom_h2a647_orf1p488_w5_60x_p002_cmle_(2).hgsb	100%	26KB	7.4MB/s	00:00
wtsox6_6ohda25_tdtom_h2a647_orf1p488_w5_60x_p002_cmle_(4).ics	100%	704MB	61.2MB/s	00:11
wtsox6_6ohda25_tdtom_h2a647_orf1p488_w5_60x_p002_cmle_(1).ics	100%	704MB	62.4MB/s	00:11
wtsox6_6ohda25_tdtom_h2a647_orf1p488_w5_60x_p_cmle.ics	100%	704MB	60.8MB/s	00:11
k-2-24Jul12-13_03_24.log	100%	62KB	11.4MB/s	00:00
wtsox6_6ohda25_tdtom_h2a647_orf1p488_w5_60x_p002_cmle.hgsb	100%	23KB	6.6MB/s	00:00
k-7-24Jun21-13_22_44.log	100%	53KB	11.6MB/s	00:00
k-0-24Jun21-13_10_27.log	100%	51KB	8.7MB/s	00:00
k-2-24Jul11-16 11 51.log	100%	62KB	13.8MB/s	00:00
wtsox6 6ohda25_tdtom h2a647 orf1p488 w5 60x p001 cmle (0).ics	100%	704MB	60.6MB/s	00:11
eduler client1.log	100%	405KB	6.0MB/s	00:00
wtsox6_6ohda25 tdtom h2a647 orf1p488 w5 60x p003 cmle (3).hgsb	100%	26KB	6.7MB/s	00:00
k-1-24Jul11-16 11 08.log	100%	62KB	6.0MB/s	00:00
wtsox6_6ohda25_tdtom_h2a647_orf1p488_w5_60x_p001_cmle_(2).hgsb	100%	26KB	2.7MB/s	00:00
k-0-24Jul11-16 10 25.log	100%	62KB	5.9MB/s	00:00
wtsox6_6ohda25_tdtom_h2a647_orf1p488_w5_60x_p_cmle_(4).ics	68%	480MB	69.5MB/s	00:03 ET

Figure 16: Transferring the output directory using scp.

Acknowledgments

We thank Jake Carroll, Sarah Walters, Marlies Hankel, Edan Scriven, and Owen Powell of UQ RCC and Vincent Schoonderwoert of SVI for making Huygens Professional and Core happen on Bunya OnDemand and SLURM, Eugenia Ferreiro of the QBI Faulkner Lab for the use of her image data for testing, and Andrew Thompson of QBI Microscopy for help with testing.

We are grateful to Jacqui Romero, whose document, "Bunya SPINS guide," portions of the text here were adapted from.